Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An experimental Alzheimer's drug reverses genetic changes thought to spur the disease

04.05.2016

Aging takes its toll on the brain, and the cells of the hippocampus--a brain region with circuitry crucial to learning and memory--are particularly vulnerable to changes that can lead to Alzheimer's disease or cognitive decline. With the hope of counteracting the changes that can lead to these two conditions, researchers at Rockefeller University and their colleagues have begun examining the effects of a drug known to affect this circuitry.

In new research described recently in Molecular Psychiatry, a team led by Ana Pereira, Instructor in Clinical Medicine in Bruce McEwen's laboratory found that the drug, riluzole, is capable of reversing key genetic changes associated with these conditions.


After treatment with riluzole, the brains of old rats showed more of a transporter molecule that removes excess glutamate, (green fluorescence, right) as compared to untreated rats (left).

Credit: Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology at The Rockefeller University/Molecular Psychiatry

"In aging and Alzheimer's, the chemical signal glutamate can accumulate between neurons, damaging the circuitry," Pereira says. "When we treated rats with riluzole, we saw a suite of changes. Perhaps most significantly, expression of molecules responsible for clearing excess glutamate returned to more youthful levels."

Previous work in McEwen's lab by Pereira has shown that the drug prompted structural changes in rats' neurons that prevent the memory loss often seen in old animals. Pereira is currently testing riluzole for the first time in Alzheimer's patients in a clinical trial at the Rockefeller University Hospital.

Glutamate clean up

Generally, glutamate is released to excite other neurons and doesn't linger in the spaces between them. As we age, though, the system gets a little leaky and glutamate can build up in these intercellular spaces.

This happens in part when neurons make less and less of the transporter molecule responsible for removing excess glutamate. When it accumulates, this essential neurotransmitter can cause big problems, damaging or killing neurons and so contributing to Alzheimer's disease, and other disorders.

Pereira and co-first author Jason Gray, a postdoc in the lab sought to better understand the molecular vulnerabilities of an aging glutamate system and riluzole's effect on it.

"The essence is we used a drug known to modulate glutamate, and when we gave it to old rats, we saw it reversed many of the changes that begin in middle age in the hippocampus," Gray says. "We saw a similar pattern when we compared the riluzole-induced changes to data from Alzheimer's patients--in a number of key pathways in the hippocampus, the drug produced an effect opposing that of the disease."

The drug, it turns out, modifies the activity of certain genes in an aged animal to resemble that of a younger rat. For example, the researchers found that the expression of a gene called EAAT2, which has been linked to Alzheimer's and is known to play a role in removing excess glutamate from nerve fibers, declines as the animals age. However, in rats treated with riluzole this gene's activity was brought back to its youthful levels.

New targets for treatments?

In addition to its potential ability to allay memory loss and cognitive decline, riluzole is attractive as a potential treatment for Alzheimer's. The drug is already being used to treat another neurological disease, amyotrophic lateral sclerosis, and is therefore considered relatively safe. In Pereira's ongoing clinical trial, patients with Alzheimer's disease have thus far been treated with either the drug or a placebo, and have been undergoing tests to help determine whether their brain functions have been improved.

"We hope to use a medication to break the cycle of toxicity by which glutamate can damage the neurons that use it as a neurotransmitter, and our studies so far suggest that riluzole may be able to accomplish this," Pereira says. "We found that in addition to recovering the expression of EAAT2, the drug restored genes critical for neural communication and plasticity, both of which decline with aging and even more significantly in Alzheimer's disease."

The findings also help to lay the groundwork for further study of glutamate transporters as potential targets for treating both conditions.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!

Further reports about: genes genetic changes glutamate memory loss neurons riluzole

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>