Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An atomic view of the trigger for the heartbeat

20.12.2019

Structural studies of sodium channels disclose details about how they power heartbeats and respond to heart rhythm drugs.

Atomic-level studies of the architecture of tiny sodium channel proteins, critical to generating electrical signals that start off each beat of the heart, are imparting striking details about their function, malfunctions, disruption by many disease mutations, and response to medication.


Cardiac sodium channel structure cartoon with binding of the antiarrhythmic drug flecainide shown as yellow sticks. The channel drawing is superimposed over a heart image. The electrocardiogram's chaotic atrial fibrillation signals (left) shift into a normal rhythm (right).

Credit: Catterall and Zheng labs at UW Medicine

This structural information could become the basis for developing better diagnostics and drugs for life-threatening heart rhythm problems, according to the researchers from the University of Washington School of Medicine working in this area.

Their latest findings appear Dec. 19 in Cell in the paper, "Structure of the Cardiac Sodium Channel." The senior authors are William Catterall and Ning Zheng, both UW School of Medicine professors of pharmacology. The first authors are Daohau Jiang and Hui Shi, UW postdoctoral fellows in pharmacology.

"The cardiac sodium channel not only initiates the heartbeat, mutations in it also cause deadly arrhythmias, and antiarrhythmic drugs act directly on it to control cardiac rhythms," explained Catterall.

The heart is both a plumbing and electrical marvel. For each heartbeat, electrical waves travel across a healthy heart in a pattern that controls its filling and pumping in a tightly coordinated manner. The rate at which the impulse is propagated through the heart tissue relies on actions taking place at the molecular level in tiny protein pores present in cardiac cell membranes.

Sodium ions - a type of charged particles -- pass through these protein passageways in the membrane boundary between the outside and inside of the cell.

Pufferfish harbor a toxin that acts on nerve and muscle, but not heart, sodium channels.

The activation and quick inactivation of these voltage-gated sodium channels are part of a series of electrical and physiological events that maintain a steady heartbeat.

"Sodium channels operate in concert with calcium channels and potassium channels to drive the heartbeat at a consistent frequency for our entire lives," Zheng noted.

When sodium channels don't work properly, the heart can be in trouble, even to the point of having dangerously fast and uncoordinated contractions that are life-threatening, the researchers explained.

Specifically, the NaV (Latin abbreviation for sodium, V for voltage) 1.5 channel has such an indispensable role that certain mutations in those channels can be fatal, because other sodium channels in the heart cannot compensate for their loss. These mutations can cause dangerous arrhythmias in adults and even sudden death in children and young athletes.

Fortunately, many heart rhythm disturbances can be treated with drugs that block cardiac sodium channels. For example, as UW Medicine physician Michael Lenaeus, a UW assistant professor of medicine, Division of General Internal Medicine, and a co-author of the study, noted, atrial fibrillation, or "A-fib," is increasingly prevalent among older Americans.

This condition can often be treated effectively with the drug flecainide. In their recent study, the researchers sought to learn, among other things, how drugs like flecainide act within the predominant form of sodium channels found in cardiac cells.

To obtain a high-resolution, 3-D map of the channels, the scientists used advanced cryo-electron microscopy at the new Beckman Center for Cryo-EM at the UW. They wanted to explore important structural features of these sodium channels and relate their configuration to their actions in normal physiological function, dysfunction, disease mutations, toxin sensitivity and the pharmacology of antiarrhythmic drugs.

According to the scientists, their experiments provide a blueprint for understanding many various aspects of cardiac sodium channels.

Among the key findings from this work were:

  • A description of some of the characteristics of the NaV1.5 channel that distinguish it from other sodium ion channels found in heart cells, as well as in nerve and muscle cells.
  • Structural insights into the mode of action of various arrhythmia mutations. There are many parts of the sodium channel protein that can be disrupted by mutations. Some mutations interfere with the activation or inactivation of the sodium channel. Others cause altered function by creating a channel protein hole that leaks sodium continuously. Still other mutations, found in Brugada syndrome, can impair or block the conductance of sodium ions.
  • Chemical insights into how the heart rhythm drug flecainide targets the inner pocket of the ion channel and plugs the central pore that conducts sodium ions.
  • The structural determinants that distinguish tetrodotoxin sensitive and insensitive sodium channels. Tetrodotoxin, the infamous, deadly poison in pufferfish, is a sodium channel blocker that has a high affinity for sodium channels in nerves and muscles, but not for those in heart cells.
  • A comparison of the conformation of an important component of the sodium ion channels that "senses" the voltage across the cell membrane and drives the channels from resting to activated states. After their rapid activation, cardiac sodium channels inactivate within 1 to 2 milliseconds, a timing that is essential to regular heart rhythm.

The researchers were able to determine how mutations can upset activation of the channel or even abolish its required rapid inactivation in a variety of ways.

In their conclusion, the researchers noted that, overall, the detailed, high-resolution structures they were able to obtain for the cardiac NaV1.5 channel allowed them to elucidate the molecular basis for several of its specific, distinctive, vital functions and to provide key chemical information for design and development of safer and more effective antiarrhythmic medications.

"Our high-resolution cryoEM structure of this iconic sodium channel gives new structure/function insights, reveals the molecular mechanisms of many inherited arrhythmias, and elucidates the exact binding site and blocking mode of the antiarrhythmic drug flecainide, which is used to treat atrial fibrillation, an increasingly prevalent problem in our aging population," Catterall said in summarizing the results.

###

The research was funded by the National Institutes of Health (R01HL112808) and the Howard Hughes Medical Institute.

Media Contact

Leila Gray
leilag@uw.edu
206-685-0381

 @uwmnewsroom

https://newsroom.uw.edu/ 

Leila Gray | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.cell.2019.11.041

More articles from Health and Medicine:

nachricht Mutations in donors' stem cells may cause problems for cancer patients
17.01.2020 | Washington University School of Medicine

nachricht Overactive brain waves trigger essential tremor
17.01.2020 | Columbia University Irving Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>