Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amyloid formation may link Alzheimer disease and type 2 diabetes

17.02.2015

Islet amyloid peptide found in human brain senile plaques with beta-amyloid, according to study published in The American Journal of Pathology

The pathological process amyloidosis, in which misfolded proteins (amyloids) form insoluble fibril deposits, occurs in many diseases, including Alzheimer disease (AD) and type 2 diabetes mellitus (T2D).

However, little is known about whether different forms of amyloid proteins interact or how amyloid formation begins in vivo. A study published in The American Journal of Pathology has found evidence that amyloid from the brain can stimulate the growth of fibrils in the murine pancreas and pancreatic-related amyloid can be found along with brain-related amyloid in human brain senile plaques.

Islet amyloid can be found in islets of Langerhans in almost all patients with T2D. Islet amyloid is made up of islet amyloid polypeptide (IAPP), which is derived from its precursor proIAPP. Accumulation of IAPP can lead to beta-cell death. In the brain, deposits of beta-amyloid in the cortex and blood vessels are characteristic findings in AD.

Several clinical studies have shown that patients with T2D have almost a two-fold greater risk of developing AD. The data described in the current study suggest that one link between the two diseases may be the processes underlying amyloidosis.

This investigation focused on understanding how amyloid deposits "seed" or spread within a tissue or from one organ to another. "Several soluble proteins are amyloid forming in humans. Independent of protein origin, the fibrils produced are morphologically similar," said Gunilla T. Westermark, PhD, Department of Medical Cell Biology at Uppsala University (Sweden).

"There is a potential for structures with amyloid-seeding ability to induce both homologous and heterologous fibril growth. Heterologous seeding between IAPP and beta-amyloid may represent a molecular link between AD and T2D." [Homologous fibril growth refers to the growth of fibrils from the same protein. Heterologous fibril growth is when fibrils from one amyloid-forming protein stimulate the growth of fibrils from a different amyloid protein.]

Researchers first injected transgenic mice expressing human IAPP with preformed fibrils of synthetic IAPP, proIAPP, or beta-amyloid. After 10 months on a high-fat diet, tissue was analyzed using an amyloid-specific dye. The number of islets with amyloid was significantly increased compared to controls by all three types of fibrils, and the amyloid consisted of IAPP in all groups. No amyloid deposits were found in the spleen, kidney, liver, heart, or lungs. The results demonstrate for the first time that fibril injections could seed amyloid formation in the pancreas and also that brain amyloid could cross-seed fibril formation in the pancreas.

In subsequent experiments the investigators analyzed human tissues from the pancreas and brain. Using antibody-based methods, they found that pancreas sections with islet amyloid from patients diagnosed with T2D showed no beta-amyloid immunoreactivity, whereas all samples were immunoreactive for IAPP.

To further investigate whether IAPP and beta-amyloid co-localize in human brain tissue researchers analyzed samples from the temporal cortex from AD patients and age-matched non-AD patients with frontotemporal dementia, progressive supranuclear palsy (PSP), or no neurological diagnosis. They found IAPP reactivity in all samples analyzed. In fact, AD samples contained 1.4-times higher IAPP concentrations than samples from non-AD patients.

"It is not clear if IAPP found in brain is locally produced or derived from pancreatic beta-cells," commented Dr. Westermark. "Cross-seeding by other amyloid aggregates or perhaps by other types of aggregates offers one possible mechanism for initiation of amyloid formation. Interactions between amyloid and other aggregation-prone proteins may be of great importance in the development of protein-misfolding diseases."

Eileen Leahy | EurekAlert!

Further reports about: ALZHEIMER Alzheimer disease Amyloid Elsevier T2D fibril fibrils pancreas proteins type 2 diabetes

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>