Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amping antimicrobial discovery with automation

17.03.2016

Automated techniques commonly used to screen new drugs for mammalian cell toxicity could also dramatically speed up the challenging task of antimicrobial discovery

The antimicrobial arsenal that we count on to save millions of lives each year is alarmingly thin--and these microbes are rapidly evolving resistance to our weapons. But help may be on the way: In a study posted in the AMB Express, researchers from the National Institute of Standards and Technology (NIST) show that automated techniques commonly used to screen new drugs for mammalian cell toxicity could also dramatically speed up the challenging task of antimicrobial discovery.


A robotic device designed for high-throughput screening of drug toxicity also could also accelerate antimicrobial discovery, NIST researchers report.

Credit: Stoughton/NIST

In the age-old struggle between humans and microbes, bacteria seem to be regaining the offensive. Only around a dozen classes of chemicals protect us from the myriad pathogens that populate our environment. Numerous agencies, including the World Health Organization and the Centers for Disease Control and Prevention, have recently warned that evolved resistance could soon render common antibiotics useless, and that few replacement drugs are in the pipeline.

The shortage of new antimicrobials is not a result of scientists lacking candidate chemicals. The fungal and plant worlds abound with potential antimicrobials, and chemists concoct new synthetic molecules all the time. However, a major bottleneck occurs at the lab bench. Any candidate compound must be tested at multiple concentrations against multiple strains of bacteria in different forms. This remains a cumbersome process, with numerous time- and labor-intensive steps that lab workers must currently carry out by hand.

But NIST researcher Samuel Forry and colleagues are convinced that the process could be vastly sped up using automation. To do so, Forry and his team looked to one of the pharmaceutical industry's most powerful tools: high-throughput screening. For several decades, companies have routinely used automated systems to test potential drugs' effects on mammalian cells in culture. In these studies, robots prepare samples of cells in arrays of small plastic wells, inject measured amounts of drugs and test whether cells live or die. The method can quickly assess multiple chemicals at different concentrations, all in parallel and with minimal human intervention.

High-throughput screening has seen limited use for antimicrobial discovery, Forry says, because less research and development money is available and because of the large variation among microbial populations and growth conditions. Hoping to stimulate the field, Forry and his team adapted a high-throughput screening robot for antimicrobial testing. The researchers tested a set of antimicrobial compounds known as pyridinium salts against the common bacterium Streptococcus mutans, which causes tooth decay.

Part of the challenge in identifying useful antimicrobial compounds is that chemicals that kill free-swimming cells are often less effective against the same bacteria growing in biofilms like the plaque that can form on teeth. So Forry's team used automation to culture both free-swimming cells and biofilms, as well as an intermediate state, side-by-side in 96-well plates. The researchers measured antimicrobial activity in three different ways by identifying the concentrations that reduced bacterial activity by half, that prevented any detectable activity, and that entirely killed the bacteria. They determined the drugs' effects with high throughput by measuring light passing through the wells or using chemicals that change color to indicate metabolic activity.

The team found that the automated system delivered results indistinguishable from those obtained by doing the experiments by hand. More importantly, the robot took only a third as much time as humans do, freed up laboratory personnel for other tasks, and carried out the procedures without errors. "That's a huge improvement from the point of view of laboratory workflow and a great boon for people trying to identify and characterize antimicrobials," Forry says.

The trials weren't fully automated--for instance, the researchers moved samples from the incubator to the screening robot by hand--but Forry says his team has demonstrated the concept, and existing technology can fill in the remaining steps. He expects other research labs will adopt the technology first, followed by pharmaceutical companies. "Once a number of people start to use this and find that it works for them as well as it has worked for us, I could easily see companies and contract labs doing it."

###

Paper: S.P. Forry, M.C. Madonna, D. López-Pérez, N.J. Lin and M.D. Pasco, "Automation of Antimicrobial Activity Screening," AMB Express 2016, 6:20. DOI: 10.1186/s13568-016-0191-2

Media Contact

Mark Bello
mark.bello@nist.gov
301-975-3776

 @usnistgov

http://www.nist.gov 

Mark Bello | EurekAlert!

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>