Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s damage occurs early

09.01.2012
The first changes in the brain of a person with Alzheimer’s disease can be observed as much as ten years in advance – ten years before the person in question has become so ill that he or she can be diagnosed with the disease.
This is what a new study from Lund University in Sweden has found.
Physician Oskar Hansson and his research group are studying biomarkers – substances present in spinal fluid and linked to Alzheimer’s disease. The group has studied close to 140 people with mild memory impairment, showing that a certain combination of markers (low levels of the substance beta-amyloid and high levels of the substance tau) indicate a high risk of developing Alzheimer’s disease in the future.

As many as 91 per cent of the patients with mild memory impairment who had these risk markers went on to develop Alzheimer’s within a ten-year period. In contrast, those who had memory impairment but normal values for the markers did not run a higher risk of getting Alzheimer’s than healthy individuals.

Oskar Hansson previously carried out a study showing that pathological changes can be seen in the brain of an Alzheimer’s patient five years before the diagnosis. The new study has thus doubled this time span to ten years.

“This is a very important finding with regard to the development of new therapies against the disease. All prospective therapies have so far shown to be ineffective in stopping the disease, and many people are concerned that the pharmaceutical companies will give up their efforts in this field. But these failures may depend on the fact that the new therapies were initiated too late.

When a patient receives a diagnosis today, the damage has already gone too far,” says Oskar Hansson.

With the help of the biomarkers studied by the group, pharmaceutical companies will now be able to identify the people with mild symptoms who run the highest risk of developing Alzheimer’s within a ten-year period. These individuals can then be offered the opportunity of taking part in trials for new medicines, while those who run a low risk of developing the disease do not need to be involved. A new trial of this kind is already underway, on the basis of the earlier study by the Hansson group.

The 90 per cent accuracy of the risk markers means that they are not sufficient as the only method for early diagnosis of Alzheimer’s. But if they can be combined with a clinical assessment and, for example, imaging of the blood flow in the brain, it should be possible to increase the level of accuracy, according to Oskar Hansson. However, this will only be relevant once drugs that are effective in slowing down the disease have been developed. Only then will it really be meaningful to identify patients earlier than is currently possible.

By observing how the levels of the biomarkers develop over the ten years before the patient’s diagnosis, the research group has also been able to map the progression of the disease in the brain. The results indicate that it starts with a modified turnover of beta-amyloid. Only later is this followed by changes in the tau protein and damage to nerve cells. This can be important information for those developing new therapies for Alzheimer’s.

Oskar Hansson, telephone +46 (0)704-417809 or email oskar.hansson@med.lu.se

Maria Lindblad | idw
Further information:
http://www.lu.se

Further reports about: Alzheimer memory impairment nerve cell pharmaceutical companies

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>