Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALS trial shows novel therapy is safe

24.04.2013
An investigational treatment for an inherited form of Lou Gehrig’s disease has passed an early phase clinical trial for safety, researchers at Washington University School of Medicine in St. Louis and Massachusetts General Hospital report.

The researchers have shown that the therapy produced no serious side effects in patients with the disease, also known as amyotrophic lateral sclerosis (ALS). The phase 1 trial’s results, available online in Lancet Neurology, also demonstrate that the drug was successfully introduced into the central nervous system.



Matthew J. Crisp

A mutated protein that causes an inherited form of Lou Gehrig’s disease leads to clumps in the human cells in the bottom image. A therapy that blocks production of this protein has passed phase 1 safety trials.

The treatment uses a technique that shuts off the mutated gene that causes the disease. This approach had never been tested against a condition that damages nerve cells in the brain and spinal cord.

“These results let us move forward in the development of this treatment and also suggest that it’s time to think about applying this same approach to other mutated genes that cause central nervous system disorders,” says lead author Timothy Miller, MD, PhD, assistant professor of neurology at Washington University. “These could include some forms of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and other conditions.”

ALS destroys nerves that control muscles, gradually leading to paralysis and death. For treatment of the disease, the sole FDA-approved medication, Riluzole, has only a marginal effect.

Most cases of ALS are sporadic, but about 10 percent are linked to inherited mutations. Scientists have identified changes in 10 genes that can cause ALS and are still looking for others.

The study focused on a form of ALS caused by mutations in a gene called SOD1, which account for 2 percent of all ALS cases. Researchers have found more than 100 mutations in the SOD1 gene that cause ALS.

“At the molecular level, these mutations affect the properties of the SOD1 protein in a variety of ways, but they all lead to ALS,” says Miller, who is director of the Christopher Wells Hobler Lab for ALS Research at the Hope Center for Neurological Disorders at Washington University.

Rather than try to understand how each mutation causes ALS, Miller and his colleagues focused on blocking production of the SOD1 protein using a technique called antisense therapy.

To make a protein, cells have to copy the protein-building instructions from the gene. Antisense therapy blocks the cell from using these copies, allowing researchers to selectively silence individual genes.

“Antisense therapy has been considered and tested for a variety of disorders over the past several decades,” Miller says. “For example, the FDA recently approved an antisense therapy called Kynamro for familial hypercholesterolemia, an inherited condition that increases cholesterol levels in the blood.”

Miller and colleagues at the University of California-San Diego devised an antisense drug for SOD1 and successfully tested it in an animal model of the disease.

Merit Cudkowicz, MD, chief of neurology at Massachusetts General Hospital, was co-PI of the phase I clinical safety trial described in the new paper. Clinicians at Barnes-Jewish Hospital, Massachusetts General Hospital, Johns Hopkins Hospital and the Methodist Neurological Institute in Houston gave antisense therapy or a placebo to 21 patients with SOD1-related ALS. Treatment consisted of spinal infusions that lasted 11 hours.

The scientists found no significant difference between side effects in the control and treatment groups. Headache and back pain, both of which are often associated with spinal infusion, were among the most common side effects.

Immediately after the injections, the researchers took spinal fluid samples. This let them confirm the antisense drug was circulating in the spinal fluid of patients who received the treatment.

To treat SOD1-related ALS in the upcoming phase II trial, researchers will need to increase the dosage of the antisense drug. As the dose rises, they will watch to ensure that the therapy does not cause harmful inflammation or other side effects as it lowers SOD1 protein levels.

“All the information that we have so far suggests lowering SOD1 will be safe,” Miller says. “In fact, completely disabling SOD1 in mice seems to have little to no effect. We think it will be OK in patients, but we won’t know for sure until we’ve conducted further trials.”

The therapy may one day be helpful in the more common, noninherited forms of ALS, some of which may be linked to problems with the SOD1 protein.

“Before we can consider using this same therapy for sporadic ALS, we need more evidence that SOD1 is a major contributor to these forms of the disorder,” Miller says.

The trial was conducted with support from ISIS Pharmaceuticals, which co-owns a patent on the SOD1 antisense drug.

Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, Andres PL, Mahoney K, Allred P, Alexander K, Ostrow LW, Schoenfeld D, Macklin EA, Norris DA, Manousakis G, Crisp M, Smith R, Bennett CF, Bishop KM, Cudkowicz ME. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised first-in-man study. Lancet Neurology, online May 29, 2013.

The clinical trial was funded by the Muscular Dystrophy Association, the ALS Association and Isis Pharmaceuticals.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>