Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergy Protects Against Toxins

25.11.2013
IMMUNE RESPONSE TRIGGERED BY HONEYBEE VENOM SUPPORTS HYPOTHESIS ON THE ORIGIN OF ALLERGIES

Allergy-like immune reactions could represent a mechanism of the body that protects it against toxins. This surprising conclusion has been reached by scientists at Stanford University, USA, working on a research project co-financed by the Austrian Science Fund FWF.

The recently published findings prove that honeybee venom triggers an immune response in mice associated with the formation of IgE antibodies, which are also typical for allergic responses. These IgEs then confer protection against higher amounts of the venom subsequently administered to the mice. Thus, for the first time, IgEs were observed as having a direct protective function against a venom - a finding that substantiates a controversial hypothesis on the emergence of allergies formulated in the 1990s.

Allergies are quite unnecessary: instead of fighting microbes that pose a threat to health, the immune system targets harmless pollens, hairs or dust particles. The question as to why the body puts up such a fight against harmless substances is one that preoccupies scientists all over the world. A study by an Erwin Schrödinger Fellow of the Austrian Science Fund FWF, which has been currently published in the journal Immunity, gives new impetus to a controversial hypothesis for the explanation of such allergic reactions.

TOXIN PROTECTS AGAINST MORE TOXIN

Dr. Philipp Starkl, who is using his fellowship to collaborate with Prof. Stephen J. Galli and his team at the Department of Pathology at Stanford University School of Medicine, summarises the results of the joint study as follows: "Mice, to whom we had previously administered small amounts of honeybee venom, subsequently displayed astonishing resistance to larger volumes of the toxin. As in the case with a vaccination, the body appeared to build a kind of immune protection against the bee venom." Interestingly, however, completely different responses in humans are also known - in some unfortunate people repeated contact with bee venom causes allergic reactions or even an anaphylactic shock. IgE-type antibodies are mainly responsible for this response.

Dr. Starkl and his colleagues investigated the question as to whether these antibodies are also involved in the reactions observed in mice. To establish this, honeybee venom was administered to three different mouse strains, in which the functioning of an immune reaction based on IgE was prevented in different ways. The results showed that, unlike the previously examined "normal" mice strains, these mice were unable to form any protection against honeybee venom. Therefore, IgEs seem to have a positive function in mice. This finding patently contradicts what was already known from humans, in who IgE antibodies are mainly seen as causing allergic reactions. It had been suspected that a positive function existed beyond this (for example in the immune response to parasites); however, it had not been possible to demonstrate it directly up to now.

EVOLUTION FOLLOWS FUNCTION

The Stanford team though was not very surprised to discover this positive function of IgE. Dr. Starkl, who, together with his Belgian colleague Dr. Thomas Marichal, is co-first author of the current publication, explains: "In our view, the assumption that the function of IgE antibodies is limited to triggering allergic reactions always fell short of the mark. Otherwise, IgEs would surely have been eliminated in the course of evolution, a consideration that also underlies the so-called toxin hypothesis."

According to this hypothesis, the body can build protection against toxic substances using IgE antibodies and allergic reactions. Thus, IgEs would have fulfilled a very important role in human evolution - which only relinquished its significance with the development of increasingly protected lifestyles of humans. Furthermore, according to the hypothesis, allergic reactions are extreme or uncontrolled forms of the protection mechanism. The "underemployment" of this response in modern times could then actually contribute to its tendency to malfunction or overreact.

The toxin hypothesis, which was proposed by Margie Profet in 1991, has been hotly contested up to now - but never been refuted. The research carried out by the FWF Erwin Schrödinger Fellow now provides the first experimental finding that substantiates it - and demonstrates, once again, the importance of keeping an open mind in science.

Original publication: T. Marichal, P. Starkl, L. L. Reber, J. Kalesnikoff, H. C. Oettgen, M. Tsai, M. Metz, und S. J. Galli, A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom, Immunity (2013), http://dx.doi.org/10.1016/j.immuni.2013.10.005

Image and text will be available online from 10 am CET on Monday, 25 November 2013, at:

http://www.fwf.ac.at/en/public_relations/press/pv201311-en.html

Scientific Contact:
Dr. Philipp Starkl
Stanford University
Department of Pathology
269 Campus Drive
CCSR 3260
Stanford, CA 94305, USA
T +1 / 650 / 736 0069
E pstarkl@stanford.edu
W http://gallilab.stanford.edu
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing and Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Further information:
http://www.fwf.ac.at

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>