Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All-Clear for Nonlinear Optical Imaging

24.07.2014

High power femto-second laser pulses used for in vivo nonlinear optical imaging can form DNA products, which may lead to carcinogenesis. A modified cancer risk model now shows that the cancer risk is negligible above that due to regular sun exposure.

In the field of biomedical imaging, nonlinear optical (NLO) imaging is gaining importance for applications such as visualizing collagen, elastin and cellular metabolic activity. The nonlinear processes needed for NLO imaging like multi-photon excitation (MPE) and second harmonic generation (SHG), require an extremely high concentration of NIR photons to excite biological fluorophores.

While conventional lasers could lead to overheating and tissue destruction, femto-second (fs) pulsed lasers conveniently provide the high photon fluxes. The harmful effects are restricted to the irradiated tissue and do not have long term effects. Yet, studies have shown that MPE processes can form UV photoproducts from DNA such as cyclobutane pyrimidine dimers (CPDs) which may eventually lead to carcinogenesis. Thus, how save are NLO biopsies?

To evaluate these safety aspects, a team from Erasmus Medical Centre, Rotterdam and from Utrecht University (The Netherlands) estimated the risk of squamous cell cancer induction in skin following nonlinear optical imaging. First, it had to be considered, that CPDs are routinely produced in human skin by the UV component of sunlight – exposure to sunlight already causes a certain risk for skin carcinogenesis, especially squamous cell carcinoma (SCC). Therefore, the scientists decided not to evaluate an absolute carcinogenic risk due to NLO imaging, but to estimate the relative carcinogenic risk of SCC from NLO imaging above the risk due to regular sunlight exposure.

As a base, they chose an established carcinogenic risk model for humans, which estimates risk from exposure to continuous wave (CW) laser. This model was modified and expanded. Instead of CW UV laser radiation, the cumulative radiation received due to pulsed NIR wavelengths from nonlinear biopsies was considered. The derived model is unique because it assesses the risk of CPD related carcinogenesis due to both 2- and 3-photon effects.

To assess how effective NIR femto-second laser pulses are at inducing carcinogenic DNA lesions, the authors compared the levels of DNA mutations (CPDs) induced in Chinese Hamster Ovary (CHO) cells in vitro by pulsed NIR from NLO imaging with those induced by regular CW UV.

The newly derived risk model indicated that the increase in CPD-induced SCC risk from NLO biopsy is negligible above that from regular exposure to UV radiation in sunlight. The relative risk from 40 or more nonlinear biopsies over is notably higher, but this increase is still lower than the risk arising from sunbathing or having an outdoor profession.

However, it has to be considered that the risk could become significant if the NLO biopsies are performed without discretion, i.e. by using unnecessarily high energy fluence for imaging, performing too many scans over the same tissue site or carrying out excessive NLO biopsies. The authors conclude that it is necessary to delineate an efficient protocol for NLO biopsy in the clinic to ensure its efficacy as a diagnostic tool and also minimize possible long-term effects. (Text contributed by K. Maedefessel-Herrmann) 

See the original publication: Giju Thomas, Oleg Nadiarnykh, Johan van Voskuilen, Christopher L. Hoy, Hans C. Gerritsen, and Henricus J. C. M. Sterenborg, Estimating the risk of skin cancer induction following nonlinear optical imaging, J. Biophotonics 7:7, 492-505 (2014); DOI http://onlinelibrary.wiley.com/doi/10.1002/jbio.201200207/pdf  

Regina Hagen | Wiley

Further reports about: Biophotonics DNA MPE NIR Nonlinear Optical biopsies biopsy carcinogenesis carcinogenic lasers processes skin sunlight

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>