Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Something Is in the Air. Ozone Can Lead to More Allergens in Grass Pollen

23.08.2010
Ozone affects pollen allergens: at ozone levels typical of photochemical smog, more allergens are formed in pollen. This connection has been demonstrated in the rye plant and is now being published in the prestigious Journal of Allergy Clinical Immunology.

The project funded by the Austrian Science Fund FWF shows that elevated ozone levels during maturation increase the protein and allergen contents of rye pollen. This points to a relationship between current environmental problems due to climate change and the rise in allergies.

It's on everyone's lips, especially during the summer months when photochemical smog engulfs the world's cities. Environmental pollution and climate change both contribute to the increasingly frequent incidences observed. While this is a major health problem in itself, there are now indications that elevated ozone levels also raise the allergen content of pollen. A team from the Medical University of Vienna and the Austrian Institute of Technology have investigated the reasons for this phenomenon.

OZONE STIMULATES RYE
The team behind project leader Prof. Rudolf Valenta of the Centre for Pathophysiology, Infectiology and Immunology at the Medical University of Vienna cultivated two different rye cultivars under controlled environmental conditions. One group of plants was exposed to elevated ozone concentrations (79 parts per billion) for part of the time. This value is more than three times the normal ozone concentration at ground level, i.e. 22 ppb, and corresponds to the health-endangering peak values that occur on hot days in Vienna. A control group was grown at normal ozone levels for subsequent comparison with the high-ozone group.

When the pollen was mature, it was harvested and collected for further study. It yielded very convincing results, as Prof. Valenta explains: "First, we were able to show that the higher ozone concentrations led to a marked elevation of the protein content in both cultivars. Further analysis showed that allergens of groups 1, 5 and 6 contribute to this increase, as does another allergen, profilin. Even in the second rye cultivar, increased ozone exposure during pollen maturation led to a sharp rise in group 1 allergens and profilin."

ALLERGEN = ALLERGY?
This result alone would seem to show that higher ozone levels can increase the allergic potential of certain grasses. However, "more allergens" does not necessarily translate to "more allergies". It was clear to Prof. Valenta and his team that potential allergens are not always recognized by the immune system and therefore do not always give rise to allergies. "A study from 2007 shows that ozone can actually decrease the allergenicity of rye allergens , comments Prof. Valenta. "So there may be more allergens, as our work shows, but whether these would react with human IgE antibodies and cause actual allergies was not clear."

However, another experiment soon provided a clear answer to this question: protein extracts from both rye cultivars were incubated with IgE antibodies from allergic patients. The results showed that the protein extracts from ozone-stressed plants reacted more strongly with the IgE antibodies, which are involved in allergic reactions, than those of the control plants, meaning that the former are more allergenic.

Consequently, the team around Prof. Valenta, Dr. Thomas Reichenauer and Prof. Verena Niederberger, managed to demonstrate in this FWF-funded project in a well controlled set of experiments that environmental problems such as rising ozone concentrations at ground level may bear some of the responsibility for the constant increase in allergic disorders in our society in recent years.

Original publication: Exposure of rye (Secale cereale) cultivars to elevated ozone levels increases the allergen content in pollen, J. Eckl-Dorna, B. Klein, T.G. Reichenauer, V. Niederberger, R. Valenta, J Allergy Clin Immunol. doi:10.1016/j.jaci.2010.06.012

Scientific Contact:
Prof. Rudolf Valenta
Medical University of Vienna
Centre for Pathophysiology, Infectiology and Immunology Währinger Gürtel 18-20 1090 Vienna, Austria M +43 / 699 / 12 57 0519 E Rudolf.valenta@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Medical University of Vienna | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201008-en.html
http://www.prd.at
http://www.meduniwien.ac.at

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>