Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AI can jump-start radiation therapy for cancer patients

28.01.2020

Computer instantly generates dosage plan, avoids potentially crucial delay

Artificial intelligence can help cancer patients start their radiation therapy sooner - and thereby decrease the odds of the cancer spreading - by instantly translating complex clinical data into an optimal plan of attack.


Dr. Mu-Han Lin, left, consults with Dr. Steve Jiang about a radiation treatment plan developed by artificial intelligence. Dr. Jiang's team trained four deep-learning models to instantly generate dosage plans and shorten the time patients must wait before starting radiation therapy.

Credit: UTSW

Patients typically must wait several days to a week to begin therapy while doctors manually develop treatment plans.

But new research from UT Southwestern shows how enhanced deep-learning models streamlined this process down to a fraction of a second.

"Some of these patients need radiation therapy immediately, but doctors often have to tell them to go home and wait," says Steve Jiang, Ph.D., who directs UT Southwestern's Medical Artificial Intelligence and Automation (MAIA) Lab.

"Achieving optimal treatment plans in near real time is important and part of our broader mission to use AI to improve all aspects of cancer care."

Radiation therapy is a common form of cancer treatment that utilizes high radiation beams to destroy cancer cells and shrink tumors. Previous research shows that delaying this therapy by even a week can increase the chance of some cancers either recurring or spreading by 12-14 percent.

Such statistics motivated Jiang's team to explore methods of using AI to improve multiple facets of radiation therapy - from the initial dosage plans required before the treatment can begin to the dose recalculations that occur as the plan progresses.

Jiang says developing a sophisticated treatment plan can be a time-consuming and tedious process that involves careful review of the patient's imaging data and several phases of feedback within the medical team.

A new study from the MAIA Lab on dose prediction, published in Medical Physics, demonstrated AI's ability to produce optimal treatment plans within five-hundredths of a second after receiving clinical data for patients.

Researchers achieved this by feeding the data for 70 prostate cancer patients into four deep-learning models. Through repetition, the AI learned to develop 3D renderings of how best to distribute the radiation in each patient. Each model accurately predicted the treatment plans developed by the medical team.

The study builds upon other MAIA research published in 2019 that focused on developing treatment plans for lung and head and neck cancer.

"Our AI can cut out much of the back and forth that happens between the doctor and the dosage planner," Jiang says. "This improves the efficiency dramatically."

A second new study by Jiang, also published in Medical Physics, shows how AI can quickly and accurately recalculate dosages before each radiation session, taking into account how the patient's anatomy may have changed since the last therapy. A conventional, accurate recalculation sometimes requires patients to wait 10 minutes or more, in addition to the time needed to conduct anatomy imaging before each session.

Jiang's researchers developed an AI algorithm that combined two conventional models that had been used for dose calculation: a simple, fast model that lacked accuracy and a complex one that was accurate but required a much longer time, often about a half-hour.

The newly developed AI assessed the differences between the models - based on data from 70 prostate cancer patients - and learned how to utilize both speed and accuracy to generate calculations within one second.

UT Southwestern plans to use the new AI capabilities in clinical care after implementing a patient interface. Meanwhile, the MAIA Lab is developing deep-learning tools for several other purposes, including enhanced medical imaging and image processing, automated medical procedures, and improved disease diagnosis and treatment outcome prediction.

###

About the studies

The studies were supported with grants from the National Institutes of Health and the Cancer Prevention & Research Institute of Texas (CPRIT). Jiang is Vice Chair and Professor of Radiation Oncology and Director of the Division of Medical Physics and Engineering. He holds the Barbara Crittenden Professorship in Cancer Research.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

James Beltran | EurekAlert!
Further information:
https://www.utsouthwestern.edu/newsroom/articles/year-2020/ai-radiation-therapy.html

Further reports about: AI Radiation prostate cancer radiation therapy

More articles from Health and Medicine:

nachricht Experiments in mice and human cells shed light on best way to deliver nanoparticle therapy for cancer
26.03.2020 | Johns Hopkins Medicine

nachricht Too much salt weakens the immune system
26.03.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>