Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016

MRI data reveals structural asymmetries that vary among individuals, are greater among those who develop dementia

Use of a novel approach to analyzing brain structure that focuses on the shape rather than the size of particular features may allow identification of individuals in early presymptomatic stages of Alzheimer's disease. A team of Massachusetts General Hospital (MGH) investigators using advanced computational tools to analyze data from standard MRI scans report that individuals with Alzheimer's disease, including those diagnosed partway through a multi-year study, had greater levels of asymmetry - differences in shape between the left and right sides of the brain - of key brain structures. Their study has been published online in the journal Brain.


Computational model of the cortical and subcortical brain structures that form the basis of the BrainPrint, a system for representing the whole brain based on the shape, rather than the size of structures.

Credit: Martin Reuter, Ph.D., and Christian Wachinger, Ph.D., Martinos Center for Biomedical Imaging, Massachusetts General Hospital

"Our results show for the first time that asymmetry of the hippocampus and amygdala increases with disease severity, above and beyond age-associated effects," says Christian Wachinger, PhD, formerly with the Martinos Center for Biomedical Imaging at MGH, the lead author of the report. "By studying the progression of asymmetry from mild cognitive impairment to dementia, we demonstrated that greater asymmetry in those and a few other structures can predict disease progression and could be a biomarker allowing early detection of dementia."

Wachinger is part of a team led by Martin Reuter, PhD, of the Martinos Center, that developed BrainPrint, a computer-aided system for representing the whole brain based on the shapes rather than the size or volume of structures. Originally described in a 2015 article in NeuroImage, BrainPrint appears to be as accurate as a fingerprint in distinguishing among individuals. In a recent paper in the same journal, Wachinger and Reuter demonstrated the use of BrainPrint for automated diagnosis of Alzheimer's disease.

The current study used BrainPrint to analyze structural asymmetries in a series of MR images of almost 700 participants in the National Institute of Health-sponsored Alzheimer's Disease Neuroimaging Initiative (ADNI). Participation in that study involves MR brain imaging taken upon enrollment and repeated every 6 to 12 months, along with cognitive and genetic testing; and the MGH study analyzed data from ADNI participants with at least three MRI scans. Participants were divided into four groups: those diagnosed with probable Alzheimer's when entering the study, healthy controls with no sign of dementia, individuals with mild cognitive impairment that remained stable over the two to three years for which scans were available, and those with mild cognitive impairment that progressed to Alzheimer's disease during the study.

BrainPrint analysis of the data revealed that initial, between-hemisphere differences in the shapes of the hippocampus and amygdala - structures known to be sites of neurodegeneration in Alzheimer's disease - were highest in individuals with dementia and lowest in healthy controls. Among those originally classified with mild cognitive impairment, baseline asymmetry was higher in those that progressed to Alzheimer's dementia and became even greater as symptoms developed. Increased asymmetry was also associated with poorer cognitive test scores and with increased cortical atrophy.

The senior author of the Brain paper, Reuter explains, "Several studies have indicated that Alzheimer's has different effects in different sub-structures of the hippocampus and amygdala. Since the shape descriptors of BrainPrint are more sensitive to subtle changes within a structure than are standard volume-based measures, they are better suited to quantify early disease effects and predict future progression, which opens up new research directions into the mechanisms that cause these asymmetries. For example, in addition to asymmetric distribution of amyloid beta, which has been reported, the differences could reflect disease subtypes that affect hemispheres differently."

Now a professor of Neurobiological Research in the Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy at Ludwig Maximilian University of Munich, Wachinger adds, "In collaboration with colleagues at the Martinos Center, we are planning further exploration of the relationship between shape asymmetries and established Alzheimer's disease biomarkers to better understand the underlying biological mechanisms. Differentiating between those with stable mild cognitive impairment and those who will progress to Alzheimer's is of great clinical relevance, as it could help select individuals appropriate for clinical trials of disease-modifying therapies."

###

Reuter is an assistant professor of Radiology and of Neurology at Harvard Medical School and director of the Laboratory for Computational Longitudinal Neuroimaging at the Martinos Center. He also holds a research affiliation at the Massachusetts Institute of Technology. Additional co-authors of the Brain paper are David Salat, PhD, Martinos Center, and Michael Weiner, MD, University of California, San Francisco. Support for the study includes National Institutes of Health grant 1K25CA181632, Massachusetts Alzheimer's Disease Research Center grant 5P50AG005134, and grants from the Humboldt Foundation, MGH Neurology Clinical Trials Unit, the Harvard NeuroDiscovery Center, and the Genentech Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals, earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Terri Ogan | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

Rising CO2 has unforeseen strong impact on Arctic plant productivity

21.02.2019 | Studies and Analyses

A landscape of mammalian development

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>