Accelerated infant growth increases risk of future asthma symptoms in children

“We know that low birth weight is associated with an increased risk of asthma symptoms in children, but the effects of specific fetal and infant growth patterns on this risk had not been examined yet,” said researcher Liesbeth Duijts, MD, PhD. “In our study, weight gain acceleration in early infancy was associated with an increased risk of asthma symptoms in children of preschool age, independent of fetal growth patterns, suggesting that early infancy might be a critical period for the development of asthma.”

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

This study was embedded in the Generation R Study, a population-based prospective cohort study, and included 5,125 children who were followed from fetal life through the age of four. Information on asthma symptoms was obtained by questionnaires at the ages of 1, 2, 3, and 4.

No consistent relationships between fetal length and weight growth during different trimesters and the development of asthma symptoms were observed. Accelerated weight gain from birth to 3 months following normal fetal growth was associated with increased risks of asthma symptoms, including wheezing (overall odds ratio (OR) 1.44 (95% confidence interval (CI): 1.22, 1.70), shortness of breath: 1.32 (1.12, 1.56), dry cough: 1.16 (1.01, 1.34), and persistent phlegm: 1.30 (1.07, 1.58)). The associations between accelerated infant growth and risk of developing asthma symptoms were independent of other fetal growth patterns and tended to be stronger among children of atopic mothers.

“Our results suggest that the relationship between infant weight gain and asthma symptoms is not due to the accelerated growth of fetal growth-restricted infants only,” said Dr. Duijts. “While the mechanisms underlying this relationship are unclear, accelerated weight growth in early life might adversely affect lung growth and might be associated with adverse changes in the immune system.”

The study had a few limitations, including the possibility of measurement error in the estimation of fetal weight and the use of self-report for asthma symptoms.

“Further research is needed to replicate our findings and explore the mechanisms that contribute to the effects of growth acceleration in infancy on respiratory health,” concluded Dr. Duijts. “The effects of infant growth patterns on asthma phenotypes in later life should also be examined.”

About the American Journal of Respiratory Research and Critical Care Medicine:

With an impact factor of 10.191, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Media Contact

Nathaniel Dunford EurekAlert!

More Information:

http://www.thoracic.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors