Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tool to better screen and treat aneurysm patients

30.05.2014

New research by an international consortium, including a researcher from Lawrence Livermore National Laboratory, may help physicians better understand the chronological development of a brain aneurysm.

Using radiocarbon dating to date samples of ruptured and unruptured cerebral aneurysm (CA) tissue, the team, led by neurosurgeon Nima Etminan, found that the main structural constituent and protein -- collagen type I -- in cerebral aneurysms is distinctly younger than once thought.


A cerebral aneurysm is a blood-filled bulge formed in response to a weakness in the wall at branching brain arteries. If the bulge bursts (shown left), the person can undergo a brain hemorrhage, which is a subtype of stroke and a life-threatening condition. An international team including a researcher from Lawrence Livermore found that the main structural constituent and protein in cerebral aneurysms is distinctly younger than once thought. The new research helps identify patients more likely to suffer from an aneurysm and embark on a path toward prevention.

The new research helps identify patients more likely to suffer from an aneurysm and embark on a path toward prevention.

Simplified, a CA is a blood-filled bulge formed in response to a weakness in the wall at branching brain arteries. If the bulge bursts, the person can undergo a brain hemorrhage, which is a subtype of stroke and a life-threatening condition.

For decades, doctors have assumed that CAs rarely undergo structural change, and earlier theories speculated that CAs grow at a constant rate. The new findings, which appear in the June print issue of the journal Stroke, challenge the concept that CAs are present for decades and that they undergo only sporadic episodes of structural change. In view of these findings, it seems more likely that they alternate between periods of stability and instability during which they are prone to rupture.

For patients with CAs, who are more likely to undergo an aneurysm rupture due to risk factors such as smoking or hypertension, the international team including LLNL's Bruce Buchholz found that the age of collagen type I was significantly younger than those samples taken from people with no risk factors.

The ample amount of relatively young collagen type I in CAs suggests that collagen is changing all the time in aneurysms, which is significantly more rapid in patients with risk factors, Buchholz said.

Radiocarbon bomb-pulse dating uses an isotopic signature created by above-ground nuclear testing between 1955 and 1963, which nearly doubled the amount of carbon-14 in the atmosphere.

When the above-ground test-ban treaty took effect in 1963, atmospheric levels of radiocarbon began to decline as carbon-14 migrated into the oceans and biosphere. Living organisms naturally incorporate carbon into their tissues as the element moves through the food chain. As a result, the concentration of carbon-14 leaves a permanent time stamp on every biological molecule.

"This research may help doctors to formulate better screening and identification of those people at increased risk of an aneurysm rupture," Buchholz said.

The prevalence of unruptured CAs in the general population is 2 percent to 3 percent. The rate of death when they rupture is more than 35 percent. The high rate of death has led the medical community to try to understand the formation and natural history of these lesions to define standards for screening, treatment and identification of those CAs that are likely to rupture.

Other institutions include: Department of Neurosurgery and Institute of Forensic Medicine Heinrich-Heine University Institute for Physiological Chemistry and Pathobiochemistry, Westfalian Wilhelms-University; Department of Neurology, Mayo Clinic; Department of Epidemiology, University of Iowa; Division of Neurosurgery, St. Michael's Hospital;  Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital; and the Department of Surgery,University of Toronto.

Anne Stark | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-06.html#.U4iPLWGKDcs

Further reports about: Biomedical Department Epidemiology Neurosurgery atmosphere biosphere carbon-14 cerebral protein

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>