Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study shows how the brain switches into memory mode

06.05.2016

Researchers from Germany and the USA have identified an important mechanism with which memory switches from recall to memorization mode. The study may shed new light on the cellular causes of dementia. The work was directed by the University of Bonn and the German Center for Neurodegenerative Diseases (DZNE). It is being published in the renowned journal “Neuron.”

Because of its shape, the control center of memory bears the poetic name of “hippocampus” (seahorse). New sensations to be stored continually enter this region of the brain. But at the same time, the hippocampus is also the guardian of memories: It retrieves stored information from the depths of memory.


Exposed to new sensations certain nerve cells, via their appendages (green in the image), release acetylcholine into the hippocampus. The astrocytes (red) release glutamate.

(c) Photo: Milan Pabst & Oliver Braganza/University of Bonn

The hippocampus is also an important transport junction. And just like rush hour in a major city, it also needs a regulating hand to control the opposing flows of information. The researchers from Bonn, Los Angeles and Palo Alto have now identified such a memory traffic policeman. Certain cells in the brain, the hippocampal astrocytes, ensure that the new information is given priority. The mind thus switches into memorization mode; by contrast, the already saved memories must wait.

However, the astrocytes themselves only take orders: They react to the neurotransmitter acetylcholine, which is released in particular in novel situations. It has been known for several years that acetylcholine promotes the storage of new information. How this happens has only been partly understood.

“In our work, we were able to show for the first time that acetylcholine stimulates astrocytes which then are induced to release the transmitter glutamate,” explains Milan Pabst, who is a doctoral candidate at the Laboratory for Experimental Epileptology of the University of Bonn. “The released glutamate then activates inhibitory nerve cells which inhibit a pathways mediating the retrieval of memories.”

The researchers working with the neuroscientist Prof. Dr. Heinz Beck genetically modified nerve cells so that they could be activated by light and then release acetylcholine. Using this trick, they were able to clarify the mechanism using recordings in living brain tissue sections. “However, we also show that, in the brains of living mice, acetylcholine has the same effect on the activity of the neurons,” explains Pabst’s colleague, Dr. Holger Dannenberg.

Astrocytes have long since been underestimated

Another reason this result is interesting is because astrocytes themselves are not nerve cells. They belong to what are known as glial cells. Until the turn of the millennium, they were still considered to merely serve as mechanical support to the real stars of the brain, the neurons.

In recent decades, however, it has become increasingly clearer that this image is far from correct. It is known by now that astrocytes can release neurotransmitters – the messengers by which neurons communicate with each other – or even remove them from the brain.

“It was previously unknown that the astrocytes are involved in central memory processes through the mechanism which has now been discovered,” explains Prof. Beck. However, an observation made by US scientists in 2014 fits into this context: If astrocytes’ function is inhibited, this has a negative effect on the recognition of objects.

The results may also shed new light on the cellular causes of memory disorders. Thus there are indications that the controlled secretion of acetylcholine is disrupted in patients with Alzheimer’s dementia. “However, we have not investigated whether the mechanism we discovered is also impacted,” stresses Pabst.

Publication: Milan Pabst, Oliver Braganza, Holger Dannenberg, Wen Hu, Leonie Pothmann, Jurij Rosen, Istvan Mody, Karen van Loo, Karl Deisseroth, Albert Becker, Susanne Schoch, Heinz Beck: Astrocyte intermediaries of septal cholinergic modulation in the hippocampus; Neuron, DOI: 10.1016/j.neuron.2016.04.003

Media contact information:

Prof. Dr. Heinz Beck
Laboratory for Experimental Epileptology, University of Bonn
& German Center for Neurodegenerative Diseases (DZNE)
Tel. ++49-228-6885270
E-Mail: heinz.beck@ukb.uni-bonn.de

Milan Pabst
Laboratory for Experimental Epileptology, AG Beck & Neuronal Networks in Health & Disease, AG Mody, University of Bonn
Tel. ++49-228-6885332
E-Mail: pabst@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>