A solution to sinusitis from the sea

They are using an enzyme isolated from a marine bacterium Bacillus licheniformis found on the surface of seaweed which the scientists at Newcastle University were originally researching for the purpose of cleaning the hulls of ships.

Publishing in PLOS ONE, they describe how in many cases of chronic sinusitis the bacteria form a biofilm, a slimy protective barrier which can protect them from sprays or antibiotics. In vitro experiments showed that the enzyme, called NucB dispersed 58% of biofilms.

Dr Nicholas Jakubovics of Newcastle University said: “In effect, the enzyme breaks down the extracellular DNA, which is acting like a glue to hold the cells to the surface of the sinuses. In the lab, NucB cleared over half of the organisms we tested.”

Sinusitis with or without polyps is one of the most common reasons people go to their GP and affects more than 10% of adults in the UK and Europe. Mr Mohamed Reda Elbadawey, Consultant of Otolaryngology Head and Neck Surgery, Freeman Hospital – part of the Newcastle Hospitals NHS Foundation Trust – was prompted to contact the Newcastle University researchers after a student patient mentioned a lecture on the discovery of NucB and they are now working together to explore its medical potential.

Mr Elbadawey said: “Sinusitis is all too common and a huge burden on the NHS. For many people, symptoms include a blocked nose, nasal discharge or congestion, recurrent headaches, loss of the sense of smell and facial pain. While steroid nasal sprays and antibiotics can help some people, for the patients I see, they have not been effective and these patients have to undergo the stress of surgery. If we can develop an alternative we could benefit thousands of patients a year.”

In the research, the team collected mucous and sinus biopsy samples from 20 different patients and isolated between two and six different species of bacteria from each individual. 24 different strains were investigated in the laboratory and all produced biofilms containing significant amounts of extracellular DNA. Biofilms formed by 14 strains were disrupted by treatment with the novel bacterial deoxyribonuclease, NucB.

When under threat, bacteria shield themselves in a slimy protective barrier. This slimy layer, known as a biofilm, is made up of bacteria held together by a web of extracellular DNA which adheres the bacteria to each other and to a solid surface – in this case in the lining of the sinuses. The biofilm protects the bacteria from attack by antibiotics and makes it very difficult to clear them from the sinuses.

In previous studies of the marine bacterium Bacillus licheniformis, Newcastle University scientists led by marine microbiologist Professor Grant Burgess found that when the bacteria want to move on, they release an enzyme which breaks down the external DNA, breaking up the biofilm and releasing the bacteria from the web. When the enzyme NucB was purified and added to other biofilms it quickly dissolved the slime exposing the bacterial cells, leaving them vulnerable.

The team's next step is to further test and develop the product and they are looking to set up collaboration with industry.

Media Contact

Karen Bidewell EurekAlert!

More Information:

http://www.ncl.ac.uk

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors