Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What a Sleep Study Can Reveal About Fibromyalgia

05.09.2008
Research engineers and sleep medicine specialists from two Michigan universities have joined technical and clinical hands to put innovative quantitative analysis, signal-processing technology and computer algorithms to work in the sleep lab. One of their recent findings is that a new approach to analyzing sleep fragmentation appears to distinguish fibromyalgia patients from healthy controls.

Joseph W. Burns, a research scientist and engineer at the Michigan Tech Research Institute (MTRI); Ronald D. Chervin, director of the University of Michigan’s Michael S. Aldrich Sleep Disorders Laboratory; and Leslie Crofford, director of the Center for the Advancement of Women’s Health at the University of Kentucky, report the results of their study in the current issue of the journal Sleep Medicine

MTRI, a freestanding research institute acquired by Michigan Tech in 2006 and based in Ann Arbor, specializes in remote sensors that collect data, and in signal processing, using algorithms or computer programs to analyze and correlate the information the sensors gather. MTRI has developed an ongoing collaboration with the University of Michigan’s sleep laboratory, one of the nation’s leading clinical and research centers specializing in sleep medicine.

This several-year collaboration provided MTRI’s first opportunities to apply quantitative analysis, remote sensing technology and computer algorithms to clinical challenges, said Burns. “In this case, our analyses of sleep stage dynamics suggest potential clinical relevance,” he noted. Newly explored measures of sleep fragmentation seem to correlate—at least in this study—with levels of pain reported by fibromyalgia patients.

Burns, who has a PhD in electrical engineering, finds that more and more of his research is taking a biomedical turn. He and his team are working with Chervin to use signal-processing technology to record and analyze the brain waves and biophysical responses of children and adults with a variety of sleep disorders. They hope it will help them better understand conventional sleep patterns, as well as diagnose and treat sleep disorders.

They presented the results of research related to assessment of sleep-disordered breathing and sleep fragmentation at Sleep 2008, an international sleep research conference, in Baltimore in June.

Patients who may have sleep disorders often undergo complicated and expensive tests in sleep laboratories, Chervin explained. These studies collect an assortment of biophysical data that reflect brain, cardiovascular and muscle activity throughout the night. Up to now, these data had to be analyzed manually by highly trained technicians.

“We are collaborating to find new ways to analyze routinely collected data in a way that will be meaningful to the patient’s health and will help us understand how sleep disorders affect brain functions,” he said.

Automated analysis of data potentially can provide improved assessments and reduce the cost of sleep studies, Burns noted. For example, MTRI and UM have developed an automated technique for assessing the severity of sleep-disordered breathing, using just two signals—brain waves and respiration—instead of the dozen or more signals typically needed for standard visual scoring of a sleep study.

“It may even become possible for people to take sleep tests—simpler and more effective than some of those currently available—at home where they can sleep in their own familiar bedrooms,” he suggested.

Both partners are reaping the benefits of the collaboration, Burns said. Not only can automated technology improve clinical research; what the MTRI scientists have learned about biomedical techniques such as brain mapping is informing their more traditional work on radar and optical sensing technology.

Michigan Tech and UM have patented the new algorithm for assessing sleep-disordered breathing, which enables them to study what the extra work of breathing does to the brainwaves of patients with sleep apnea, a sleep disorder in which breathing stops briefly many times during sleep. Sleep apnea has been linked to excessive daytime sleepiness, cognitive changes and other health effects, and to hyperactive behavior in children.

The universities have filed an application for another patent for an algorithm that helps automate the assessment of patients with REM Sleep Behavior Disorder. People with this neurological condition act out their dreams during Rapid Eye Movement (REM) sleep, which can cause them to harm themselves or a bed partner while they are asleep.

Burns and Chervin published the results of that study in the December 2007 issue of the journal Sleep.

The team plans to investigate other sleep disorders and to continue to develop automated processing techniques to improve the performance and efficiency of sleep disorder diagnosis and assessment.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Internationally renowned for patient care, research and education, the University of Michigan Health System has been a leader in American medicine for more than a century and a half. UMHS includes the U-M Medical School, three nationally ranked hospitals, 40 outpatient health centers, and a number of specialized programs for treatment and research in cancer, cardiovascular disease, geriatrics, depression, diabetes, vision, women’s health, organ transplant and other specialties. Its biomedical research community is one of the nation’s largest, winning more than $342 million in funding each year while generating more than 120 newly disclosed inventions annually.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>