Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there a relationship between sleep-wake rhythm and diabetes?

19.01.2009
A new gene variant influences fasting glucose levels via the melatonin metabolism

An international research team with German participation including Helmholtz Zentrum München, among other institutions, has succeeded in identifying a new gene variant which is associated with elevated fasting glucose levels and a high risk for type 2 diabetes.

The gene mediates insulin secretion indirectly via the release of melatonin, which implicates a previously unknown relationship between the sleep-wake rhythm and the fasting glucose level. The finding could open up new possibilities of treatment which go far beyond the primarily symptomatic therapy approaches to diabetes that have been practised until now.

Diabetes mellitus and diabetes-associated late complications are among the most frequent chronic diseases and causes of death worldwide. In Germany there are approximately six million people with type 2 diabetes who are aware that they have the disease. In addition, there is a relatively high estimated number of undiagnosed diabetics. Besides lifestyle factors such as overweight and lack of exercise, genetic factors play an important role in the pathogenesis of this disease.

The international MAGIC Consortium (MAGIC = Meta-Analyses of Glucose and Insulin-related traits Consortium) combined the data from 13 case-control studies with over 18,000 diabetic and 64,000 non-diabetic study participants and was able to identify a variant of the MTNR1B gene which is associated with both elevated fasting glucose levels as well an elevated risk for type 2 diabetes. The goal of the MAGIC Consortium is to identify gene variants which regulate the fasting glucose levels in healthy individuals.

The study results were published in the January issue of Nature Genetics.

Germany is represented within the framework of the KORA studies by scientists of the Helmholtz Zentrum München (Assistant Professor Thomas Illig; Director of the KORA studies: Professor H.-Erich Wichmann) and the German Diabetes Center in Düsseldorf (Dr. Wolfgang Rathmann, Dr. Christian Herder; Direktor: Professor Michael Roden).

The MTNR1B gene is expressed in insulin-producing islet cells, among other cells, and encodes one of the two known melatonin receptors. It is assumed that this receptor inhibits the release of insulin via the neural hormone melatonin. The melatonin level in the body is high at night and declines in daylight, whereas the insulin level is higher during the day than in the night. Taken together, these new data implicate an association between the sleep-wake rhythm, the so-called circadian rhythm, and fasting glucose levels, which was not known previously.

Until now an efficient strategy for prevention and for therapies to treat the cause of the disease has been missing in diabetes research. The Helmholtz Zentrum München is working intensively on new approaches in the study and treatment of diabetes. Further studies will show which role melatonin plays in the regulation of insulin secretion, fasting glucose levels and the development of diabetes and whether this finding will lead to new treatment options.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press-releases/press-releases-2009/press-releases-2009-detail/article/11503/44/index.html

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>