Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new material for regenerative medicine capable to control cell immune response

04.11.2019

Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

In this case, such an irritant is a regenerative material. According to scientists, the proposed solution is a simpler way to control the immune response compared to existing ones. The results were published in ACS Biomaterials Science & Engineering (IF: 4,511; Q1).


Mechanism of the developed materials: composite scaffolds from polycaprolactone release the IQ-1 inhibitor and suppress the inflammatory response of immune cells.

Credit: Tomsk Polytechnic University

"Nowadays, researchers have only a few tools to regulate the immune response. You can work with proteins, but it is difficult. You can use compounds, capable of killing immune cells, but they are harmful to other cells.

We followed a different path and suggest using inhibitors placed directly in the material itself to recover damage." - Ksenia Stankevich, author of the article and engineer of the Laboratory for Plasma Hybrid Systems, says.

Scaffolds are 3D frames of thin polymer fibers interwoven with each other in different directions. In regenerative medicine, they are used in case of injuries of bone and soft tissues. They are placed in the damaged area and new tissue regenerates through the scaffold and fills the injured area.

TPU and the University of Montana used a biodegradable polycaprolactone polymer for their scaffolds. It makes products more flexible and affordable in comparison with alternatives. The scaffolds made of polycaprolactone were created by the method of electrospinning, producing thinnest fibers from a polymer solution under the electric field. At the stage of obtaining the scaffolds, we introduce inhibitors into the polymer structure. These are two compounds - IQ-1 (full name - 11H-indeno [1,2-b] quinoxaline-11-on oxime) and IQ-1E (full name - 11H-indeno [1,2-b] quinoxaline-11- on O-(O-ethylcarboxymethyl) oxime).

"Inhibitors suppress or slow down physiological and physicochemical processes. They affect enzymes. To do this, the enzyme and the inhibitor must fit together like a lock and a key. One of the groups of enzymes responsible for the inflammatory process is the JNK group" - Ksenia Stankevich explains. "Earlier we obtained new promising inhibitors, demonstrating high biological activity in inhibiting the functioning of these enzymes, such as IQ-1 and IQ-1E. Our scaffolds differ in the use of specific inhibitors and also in the fact that we can release them from the material gradually, having a prolonged effect. This is mainly due to the gradual natural degradation of the polymer. Additionally, it degrades to biocompatible 6-hydroxycaproic acid, which is recycled by human body.

Immune response of a cell is a cascade of biochemical processes. In this case, the JNK enzymes are links in the chain. Inhibitors bind to enzymes and block their work. Thus, suppressing one link, we turn off the entire subsequent reaction chain.

"In this article, we present the research results on immune cells, isolated from human blood and cell lines. In the future, we will look for opportunities for in vivo research.

Eventually, our scaffolds could be used to recover damages of soft tissues and blood vessels. The polycaprolactone has all suitable mechanical properties. For instance, it can reduce the negative consequences after a heart attack and stroke, the researcher says.

Scaffolds from various materials are already being implemented into medical practice in developed countries, but it is too early to talk about their widespread application. However, it is only a matter of time, that is why scientists continue searching for the most effective materials and biologically active compounds. "

###

The present work is a result of the collaboration of several TPU research teams headed by Associate Prof. Sergey Tverdokhlebov, the Weinberg Research Center, Prof. Andrey Khlebnikov and Prof. Victor Filimonov, the Kizhner Research Center, and Prof. Mark Quinn, and Igor A. Schepetkin, Senior Research Associate at the Department of Microbiology and Immunology, the University of Montana.

The studies were conducted as the part of Ksenia Stankevich internship under the Fulbright Program and financially supported by the Russian Science Foundation project (No. 17-15-01111) and is a development of the RSF project No. 16-13-10239 - Development and Modeling of Hybrid Biodegradable Scaffolds with Predicted Physicochemical and Immunomodulating Properties for Tissue-Engineering Constructions

Media Contact

Vitalii Sdelnikov
Sdelnikov@tpu.ru
7-382-260-6404

 @TPUnews_en

http://www.tpu.ru/en 

Vitalii Sdelnikov | EurekAlert!
Further information:
https://news.tpu.ru/en/news/2019/11/01/35468/
http://dx.doi.org/10.1021/acsbiomaterials.9b01401

More articles from Health and Medicine:

nachricht A new link between migraines, opioid overuse may be key to treating pain
20.11.2019 | University of Illinois at Chicago

nachricht Walking Changes Vision
20.11.2019 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>