Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new material for regenerative medicine capable to control cell immune response

04.11.2019

Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

In this case, such an irritant is a regenerative material. According to scientists, the proposed solution is a simpler way to control the immune response compared to existing ones. The results were published in ACS Biomaterials Science & Engineering (IF: 4,511; Q1).


Mechanism of the developed materials: composite scaffolds from polycaprolactone release the IQ-1 inhibitor and suppress the inflammatory response of immune cells.

Credit: Tomsk Polytechnic University

"Nowadays, researchers have only a few tools to regulate the immune response. You can work with proteins, but it is difficult. You can use compounds, capable of killing immune cells, but they are harmful to other cells.

We followed a different path and suggest using inhibitors placed directly in the material itself to recover damage." - Ksenia Stankevich, author of the article and engineer of the Laboratory for Plasma Hybrid Systems, says.

Scaffolds are 3D frames of thin polymer fibers interwoven with each other in different directions. In regenerative medicine, they are used in case of injuries of bone and soft tissues. They are placed in the damaged area and new tissue regenerates through the scaffold and fills the injured area.

TPU and the University of Montana used a biodegradable polycaprolactone polymer for their scaffolds. It makes products more flexible and affordable in comparison with alternatives. The scaffolds made of polycaprolactone were created by the method of electrospinning, producing thinnest fibers from a polymer solution under the electric field. At the stage of obtaining the scaffolds, we introduce inhibitors into the polymer structure. These are two compounds - IQ-1 (full name - 11H-indeno [1,2-b] quinoxaline-11-on oxime) and IQ-1E (full name - 11H-indeno [1,2-b] quinoxaline-11- on O-(O-ethylcarboxymethyl) oxime).

"Inhibitors suppress or slow down physiological and physicochemical processes. They affect enzymes. To do this, the enzyme and the inhibitor must fit together like a lock and a key. One of the groups of enzymes responsible for the inflammatory process is the JNK group" - Ksenia Stankevich explains. "Earlier we obtained new promising inhibitors, demonstrating high biological activity in inhibiting the functioning of these enzymes, such as IQ-1 and IQ-1E. Our scaffolds differ in the use of specific inhibitors and also in the fact that we can release them from the material gradually, having a prolonged effect. This is mainly due to the gradual natural degradation of the polymer. Additionally, it degrades to biocompatible 6-hydroxycaproic acid, which is recycled by human body.

Immune response of a cell is a cascade of biochemical processes. In this case, the JNK enzymes are links in the chain. Inhibitors bind to enzymes and block their work. Thus, suppressing one link, we turn off the entire subsequent reaction chain.

"In this article, we present the research results on immune cells, isolated from human blood and cell lines. In the future, we will look for opportunities for in vivo research.

Eventually, our scaffolds could be used to recover damages of soft tissues and blood vessels. The polycaprolactone has all suitable mechanical properties. For instance, it can reduce the negative consequences after a heart attack and stroke, the researcher says.

Scaffolds from various materials are already being implemented into medical practice in developed countries, but it is too early to talk about their widespread application. However, it is only a matter of time, that is why scientists continue searching for the most effective materials and biologically active compounds. "

###

The present work is a result of the collaboration of several TPU research teams headed by Associate Prof. Sergey Tverdokhlebov, the Weinberg Research Center, Prof. Andrey Khlebnikov and Prof. Victor Filimonov, the Kizhner Research Center, and Prof. Mark Quinn, and Igor A. Schepetkin, Senior Research Associate at the Department of Microbiology and Immunology, the University of Montana.

The studies were conducted as the part of Ksenia Stankevich internship under the Fulbright Program and financially supported by the Russian Science Foundation project (No. 17-15-01111) and is a development of the RSF project No. 16-13-10239 - Development and Modeling of Hybrid Biodegradable Scaffolds with Predicted Physicochemical and Immunomodulating Properties for Tissue-Engineering Constructions

Media Contact

Vitalii Sdelnikov
Sdelnikov@tpu.ru
7-382-260-6404

 @TPUnews_en

http://www.tpu.ru/en 

Vitalii Sdelnikov | EurekAlert!
Further information:
https://news.tpu.ru/en/news/2019/11/01/35468/
http://dx.doi.org/10.1021/acsbiomaterials.9b01401

More articles from Health and Medicine:

nachricht Mutations in donors' stem cells may cause problems for cancer patients
17.01.2020 | Washington University School of Medicine

nachricht Overactive brain waves trigger essential tremor
17.01.2020 | Columbia University Irving Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>