A Metabolic imbalance increases the risk of respiratory diseases in childhood

The metabolism influences the manifestation of respiratory diseases. This was shown in the mother-child study (LiNA), following the medical and environmental development of more than 620 children. André Künzelmann, UFZ

If pathogenic agents penetrate our body, our immune system is put on high alert. The body reacts with inflammatory processes, initiating a whole series of defence mechanisms – with the aim of quickly and effectively incapacitating the undesirable intruders.

However, on occasion, an alteration in metabolic balance can be the trigger for an inflammatory immune response. In such cases, forces are mobilised to combat an enemy that does not actually exist.

“We wanted to find out whether this phenomenon is present among newborns and children under one year of age,” says UFZ Researcher Dr. Gunda Herberth. Her study published in the Journal of Allergy and Clinical Immunology is part of the so-called “LiNA Study”, which examines sensitive phases of a child's development with a focus on lifestyle, environmental factors and the subsequent appearance of allergies and respiratory diseases.

Dr. Herberth and her colleagues examined blood samples from newborns (cord blood) and children under one year of age for any possible correlation between metabolites and immune parameters – and made a discovery: Elevated concentrations of specific sugars – known as hexoses – in the blood were accompanied by elevated concentrations of inflammatory immune parameters.

Conversely, a high concentration of other metabolites, such as protein components (amino acids) or degradation products of certain fats inhibited the development of inflammatory parameters.

“Increased concentrations of sugars in the blood therefore do actually lead to the development of an inflammatory immune response, even in newborns. In turn, this is directly correlated with the development of respiratory diseases in early childhood,” explains Dr. Herberth.

In-vitro tests carried out by the researchers have confirmed the findings of her epidemiological investigation: In cell cultures, immune cells exposed to hexoses showed elevated concentrations of inflammatory parameters, while those exposed to amino acids inhibited the production of inflammatory components. Dr. Herberth commented: “As certain amino acids can obviously also provide protection from inflammation, we assume that the balance between the metabolites is primarily responsible for the development of inflammatory processes.”

So in subsequent investigations, the UFZ researchers are aiming to determine the reason for this kind of change in the concentration of metabolites in the blood: “In addition to diet, environmental pollutants also undoubtedly play a decisive role,” stated Dr. Herberth. “For example, we know that plasticisers can impair our metabolism. Precisely how and where they disrupt our metabolic pathways – and depending on the degree, with far-reaching consequences – will be the focus of our future research.”

Publication:
Endogenous metabolites and inflammasome activity in early childhood and links to respiratory diseases
Gunda Herberth, Kirsten Offenberg, Ulrike Rolle-Kampczyk, Mario Bauer, Wolfgang Otto, Stefan Röder, Konrad Grützmann, Ulrich Sack, Jan-Christoph Simon, Michael Borte, Martin von Bergen, Irina Lehmann, for the LINA Study Group
DOI: http://dx.doi.org/10.1016/j.jaci.2015.01.022

The investigations of the LiNA Study were supported the Helmholtz Association.

Further information:
Dr. Gunda Herberth, Dr. Irina Lehmann
Department Environmental Immunology
Telefon: +49-(0)341-235-1547, gunda.herberth@ufz.de
or via
UFZ press office (Tilo Arnhold, Susanne Hufe)
Phone: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotech-nologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our re-search contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ em-ploys more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as avia-tion, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an an-nual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

http://www.ufz.de/index.php?en=33684

Media Contact

Susanne Hufe Helmholtz-Zentrum für Umweltforschung - UFZ

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors