Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'half-hearted' solution to one-sided heart failure

24.11.2017

Soft robotic system can provide isolated support to the right or left ventricle

Soft robotic actuators, which are pneumatic artificial muscles designed and programmed to perform lifelike motions, have recently emerged as an attractive alternative to more rigid components that have conventionally been used in biomedical devices. In fact, earlier this year, a Boston Children's Hospital team revealed a proof-of-concept soft robotic sleeve that could support the function of a failing heart.


This is an illustration showing sectional view of a heart with the soft robotic system helping to draw blood into (left) and pump blood out (right) of the heart's right ventricle.

Credit: Boston Children's Hospital

Despite this promising innovation, the team recognized that many pediatric heart patients have more one-sided heart conditions. These patients are not experiencing failure of the entire heart -- instead, congenital conditions have caused disease in either the heart's right or left ventricle, but not both.

"We set out to develop new technology that would help one diseased ventricle, when the patient is in isolated left or right heart failure, pull blood into the chamber and then effectively pump it into the circulatory system," says Nikolay Vasilyev, MD, a researcher in cardiac surgery at Boston Children's.

... more about:
»heart failure »left ventricle »pump »ventricle

Now, Vasilyev and his collaborators -- including researchers from Boston Children's, the Harvard John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University -- have revealed their soft robotic solution. They describe their system in a paper published online in Science Robotics today.

Getting to the heart of the challenge

Although other existing mechanical pumps can help propel blood through the heart, they are designed so that blood must run through the pump itself, exposing blood to its unnatural surface.

"Running blood through a pump always requires a patient to be placed -- permanently -- on anticoagulant medication to prevent blood clotting," Vasilyev says, who is a co-senior author on the paper. "It can be very difficult to keep the right balance of medication, especially in pediatric patients, who are therefore at risk of excessive bleeding or dangerous clotting."

So, using external actuators to help squeeze blood through the heart's own chamber, the team has designed a system that could theoretically work with minimal use of anticoagulants.

"We've combined rigid bracing with soft robotic actuators to gently but sturdily help a diseased heart chamber pump blood effectively," Vasilyev says.

The rigid brace component is deployed via a needle into the heart's intraventricular septum, the wall of tissue between the heart's chambers, to prevent the septum from shifting under the pressure of the artificial "muscle" of the soft actuator.

"With the use of classic left ventricular assist devices, there are patients who experience a septum shift towards the right side and subsequent ballooning of the right ventricle, which can cause secondary right heart failure," Vasilyev says. "Here, the rigid brace keeps the septum in its original position, protecting the healthy right side of the heart from the mechanical load of the left ventricular assistance."

In contrast, existing ventricular assist devices (VAD) don't involve the septum at all.

Tailoring the concept for future translation

Altogether, the system involves a septal anchor, a bracing bar and sealing sleeve that pass through the ventricle wall, and a frame embedded with soft actuators that is mounted around the ventricle. The researchers designed two distinct versions of the system for the right and left ventricle.

In animal studies, the soft robotic system contributed significantly to the diseased ventricle's ability to eject blood. The researchers speculate that the system's effectiveness is due in part to its integration with the septum, which plays a key role in the heart's ability to pump blood.

The system also made significant improvement in its ability to draw blood into the ventricles, which is just as important as the heart's ability to pump it out.

"As the actuators relax, specially-designed elastic bands help return the heart's wall to its original position, filling the chamber sufficiently with blood," Vasilyev says.

Based on these initial proof-of-concept results, Vasilyev and his team are working on key design modifications that can bring this system closer to use in humans, such as portability and miniaturization of the components. They also need to do longer tests in animals to see how the system impacts the heart over prolonged periods of time.

###

In addition to Vasilyev, additional authors on the paper are: Christopher Payne, Isaac Wamala, Daniel Bautista-Salinas, Mossab Saeed, David Van Story, Thomas Thalhofer, Markus Horvath, Colette Abah, Pedro del Nido and Conor Walsh (co-senior author).

This work was supported by the U.S. Department of Defense Directed Medical Research Programs Discovery Award (W81XWH-15-1-0248), the Wyss Institute and Harvard SEAS.

Bethany Tripp | EurekAlert!

Further reports about: heart failure left ventricle pump ventricle

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>