Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A different drummer: Stanford engineers discover neural rhythms drive physical movement

04.06.2012
ding that motor cortex is a dynamic pattern generator upends existing theory with broad implications for neuroscience

Unlike their visual cousins, the neurons that control movement are not a predictable bunch. Scientists working to decode how such neurons convey information to muscles have been stymied when trying to establish a one-to-one relationship between a neuron's behavior and external factors such as muscle activity or movement velocity.

In an article published online June 3rd by the journal Nature, a team of electrical engineers and neuroscientists working at Stanford University propose a new theory of the brain activity behind arm movements. Their theory is a significant departure from existing understanding and helps to explain, in relatively simple and elegant terms, some of the more perplexing aspects of the activity of neurons in motor cortex.

In their paper, electrical engineering Associate Professor Krishna Shenoy and post-doctoral researchers Mark Churchland, now a professor at Columbia, and John Cunningham of Cambridge University, now a professor at Washington University in Saint Louis, have shown that the brain activity controlling arm movement does not encode external spatial information—such as direction, distance and speed—but is instead rhythmic in nature.

Understanding the brain

Neuroscientists have long known that the neurons responsible for vision encode specific, external-world information—the parameters of sight. It had been theorized and widely suggested that motor cortex neurons function similarly, conveying specifics of movement such as direction, distance and speed, in the same way the visual cortex records color, intensity and form.

"Visual neurons encode things in the world. They are a map, a representation," said Churchland, who is first author of the paper. "It's not a leap to imagine that neurons in the motor cortex should behave like neurons in the visual cortex, relating in a faithful way to external parameters, but things aren't so concrete for movement."

Scientists have disagreed about which movement parameters are being represented by individual neurons. They could not look at a particular neuron firing in the motor cortex and determine with confidence what information it was encoding.

"Many experiments have sought such lawfulness and yet none have found it. Our findings indicate an alternative principle is at play," said co-first author Cunningham.

"Our main finding is that the motor cortex is a flexible pattern generator, and sends rhythmic signals down the spinal cord," said Churchland.

Engine of movement

To employ an automotive analogy, the motor cortex is not the steering wheel, odometer or speedometer representing real-world information. It is more like an engine, comprised of parts whose activities appear complicated in isolation, but which cooperate in a lawful way as a whole to generate motion.

"If you saw a piston or a spark plug by itself, would you be able to explain how it makes a car move?" asked Cunningham rhetorically. "Motor-cortex neurons are like that, too, understandable only in the context of the whole."

In monitoring electrical brain activity of motor-cortex neurons, researchers found that they typically exhibit a brief oscillatory response. These responses are not independent from neuron to neuron. Instead, the entire neural population oscillates as one in a beautiful and lawfully coordinated way.

The electrical signal that drives a given movement is therefore an amalgam – a summation – of the rhythms of all the motor neurons firing at a given moment.

"Under this new way of looking at things, the inscrutable becomes predictable," said Churchland. "Each neuron behaves like a player in a band. When the rhythms of all the players are summed over the whole band, a cascade of fluid and accurate motion results."

Dr. Daofen Chen, Program Director, Systems and Cognitive Neuroscience at the National Institute of Neurological Disorders and Stroke at the National Institutes of Health, said Shenoy and team are working at the cutting edge of the field. "In trying to find the basic response properties of the motor cortex, Dr. Shenoy and his colleagues are searching for the holy grail of neuroscience," said Dr. Chen. "His team has been consistent in tackling important but tough questions, often in thought-provoking ways and in ambitious proposals. NIH is proud to support this kind of pioneering and transformative research."

Precedents in nature

In the new model, a few relatively simple rhythms explain neural features that had confounded science earlier.

"Many of the most-baffling aspects of motor-cortex neurons seem natural and straightforward in light of this model," said Cunnigham.

The team studied non-rhythmic reaching movements, which made the presence of rhythmic neural activity a surprise even though, the team notes, rhythmic neural activity has a long precedence in nature. Such rhythms are present in the swimming motion of leeches and the gait of a walking monkey, for instance.

"The brain has had an evolutionary goal to drive movements that help us survive. The primary motor cortex is key to these functions. The patterns of activity it displays presumably derive from evolutionarily older rhythmic motions such as swimming and walking. Rhythm is a basic building block of movement," explained Churchland.

Reaching for the grail

To test their hypothesis, the engineers studied the brain activity of monkeys reaching to touch a target. According to the researchers, experiments show this 'underlying rhythm' strategy works very well to explain both brain and muscle activity. In their reaching studies, the pattern of shoulder-muscle behavior could always be described by the sum of two underlying rhythms.

"Say you're throwing a ball. Beneath it all is a pattern. Maybe your shoulder muscle contracts, relaxes slightly, contracts again, and then relaxes completely, all in short order," explained Churchland. "That activity may not be exactly rhythmic, but it can be created by adding together two or three other rhythms. Our data argue that this may be how the brain solves the problem of creating the pattern of movement."

"Finding these brain rhythms surprised us a bit, as the reaches themselves were not rhythmic. In fact, they were decidedly arrhythmic, and yet underlying it all were these unmistakable patterns," said Churchland.

"This research builds on a strong theoretical framework and adds to growing evidence that rhythmic activity is important for many fundamental brain functions," said Yuan Liu of the National Institute of Neurological Disorders and Stroke, NIH. "Further research in this area may help us devise more effective technology for controlling prosthetic limbs." Liu is the co-lead of the NIH-NSF Collaborative Research in Computational Neuroscience program.

"In this model, the seemingly complex system that is the motor cortex can now be at least partially understood in more straightforward terms. The motor cortex is an engine of movement that obeys lawful dynamics," said Shenoy.

Stanford post-doctoral fellow Matthew Kaufman, bioengineering PhD student and medical science training program student Paul Nuyujukian, electrical engineering graduate student Justin Foster, and electrical engineering consulting assistant professor and Palo Alto Medical Foundation neurosurgeon Stephen Ryu were also authors on this paper.

The work of the various co-authors was supported in part by the National Institutes of Health, the Burroughs Wellcome Fund Career Awards in the Biomedical Sciences (BWF-CABS) and an Engineering and Physical Sciences Research Council grant. The work of Krishna Shenoy was supported in part by: NIH Director's Pioneer Award (1DP1OD006409), NIH NINDS EUREKA Award (R01-NS066311), NIH NINDS BRP (R01-NS064318), NIH NINDS CRCNS (R01-NS054283), DARPA REPAIR, and BWF-CABS.

This article was written by Andrew Myers, associate director of communications for the Stanford University School of Engineering.

Andrew Myers | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>