Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new candidate pathway for treating visceral obesity

07.05.2012
'Browning' white fat by blocking vitamin A metabolism

Brown seems to be the color of choice when it comes to the types of fat cells in our bodies. Brown fat expends energy, while its counterpart, white fat stores it. The danger in white fat cells, along with the increased risk for diabetes and heart disease it poses, seems especially linked to visceral fat. Visceral fat is the build-up of fat around the organs in the belly.

So in the battle against obesity, brown fat appears to be our friend and white fat our foe.

Now a team of researchers led by Jorge Plutzky, MD, director of The Vascular Disease Prevention Program at Brigham and Women's Hospital (BWH) and Harvard Medical School has discovered a way to turn foe to friend.

By manipulating the metabolic pathways in the body responsible for converting vitamin A—or retinol—into retinoic acid, Plutzky and his colleagues have essentially made white fat take on characteristics of brown fat. Their findings put medical science a step closer in the race to develop novel anti-obesity therapies.

The study will be published online on May 6, 2012 in Nature Medicine.

Retinoids, which are molecules derived from vitamin A metabolism, are responsible for many biological functions. One such function is the control of fat cell development and actions. A key step in retinoid metabolism occurs with help from an enzyme called retinaldehyde dehydrogenase 1, or Aldh1a1. The researchers saw that in humans and mice, Aldh1a1 is abundant in white fat cells, especially in the more dangerous visceral fat (sometimes referred to as abdominal fat or belly fat).

When Aldh1a1 was inhibited in white fat cells, those cells began acting like brown fat cells. One of the defining characteristics of brown fat is its ability to release energy as heat. Mice with either deficiency or inhibition of Aldh1a1 become protected against exposure to cold. The researchers saw this classic indicator of brown fat and its ability to generate heat by oxidizing fat (a chemical reaction involving oxygen) in their research.

Especially exciting for the prospects of targeting Aldh1a1 for therapeutic benefit, the researchers found that knocking down expression of the Aldh1a1 gene by injecting antisense molecules into mice made fat by diet resulted in less visceral fat, less weight gain, lower glucose levels, and protection against cold exposure as compared to control mice.

"Brown fat, and mechanisms that might allow white fat to take on brown fat characteristics, has been receiving increasing attention as a possible way to treat obesity and its complications," said Plutzky. "Although more work is needed, we can add specific aspects of retinoid metabolism to those factors that appear involved in determining white versus brown fat."

According to the Centers for Disease Control and Prevention, one-third of adults in the United States are obese. Current methods to reduce obesity include exercise, dietary therapy, medications and surgery.

This research was supported by the National Institutes of Health grants HL048743, AR054604-03S1, 5P30DK057521-12; Mary K. Iacocca Professorship; National Institute of Diabetes and Digestive and Kidney Diseases; and Austrian Science Fund.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), www.brighamandwomens.org/research, BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org.

Lori J. Shanks | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>