Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Sensor Transmits Tumor Pressure

22.09.2014

Novel technology could one day help determine optimal window for cancer treatment

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation therapy. While medications exist that temporarily decrease tumor pressure, identifying the optimal window to initiate treatment—when tumor pressure is lowest—remains a challenge. With support from NIBIB, researchers at Purdue University have developed a novel sensor that can wirelessly relay pressure readings from inside a tumor.


Babak Ziaie, PhD, Purdue University

Wireless interstitial fluid pressure sensor shown to scale on a dime.

Contents under Pressure

Tumors, like healthy tissues, need oxygen and nutrients to survive. In order to accommodate the demands of a growing tumor, blood vessels from surrounding tissue begin to grow into the tumor. Yet, unlike normal tissue, these newly formed blood vessels are disorganized, twisty, and leaky. It’s thought that the high pressure observed in tumors is a result of these abnormal blood vessels, which leak fluid and proteins into the area between tumor cells, known as the interstitial space.

In normal tissues, tightly regulated differences in pressure pull nutrients out of a tissue’s blood vessels and into the interstitial space, where they can be taken up by cells. Medications travelling through the blood also rely on these pressure differences in order to reach cells. When pressure in the interstitial space increases—as is the case in many tumors—medications are less apt to leave blood vessels. As a result, patients who have tumors with high interstitial pressure often receive a less than adequate dose of chemotherapy or other types of anti-cancer drugs. In addition, high interstitial pressure can also contribute to low oxygen levels in tumors. Because radiation therapy requires the presence of oxygen to be effective, tumors with high interstitial pressure are often less receptive to radiation therapy.

Window of Opportunity

Results from recent clinical trials and studies in animals suggest that a class of anti-cancer drugs called angiogenesis inhibitors may be able to temporarily reduce interstitial pressure and improve the efficacy of chemotherapy and radiation treatments. Angiogenesis inhibitors prevent the growth of new blood vessels and have long been investigated as a way to stop tumor growth. Recently, it has been hypothesized that there is a brief window after these drugs are given in which blood flow to tumors is actually normalized. This window provides an opportunity to more efficiently deliver chemotherapeutic drugs and radiation therapy.

However, because efficient methods for measuring interstitial tumor pressure are lacking, determining the optimal time to begin chemotherapy or radiation treatment within this normalization window remains a challenge.

“Right now, the only option for measuring pressure is to stick a needle inside the tumor. That’s not practical for clinical applications,” says Babak Ziaie, Ph.D, director of the Biomedical Microdevices Laboratory at Purdue University.

A Wireless Pressure Sensor

After conversations with radiation oncologists with whom he collaborates, Ziaie decided to take on the challenge of creating a tumor pressure sensor. He was enticed by the novelty of the project. “No one had done this before,” said Ziaie. “No one was working on it or even attempting it.”

With support from NIBIB, Ziaie and his research team created a novel sensor that can be implanted into a tumor to wirelessly transmit interstitial fluid pressure readings. The sensor is an adaptation of a technology developed in the 1950s called the Guyton capsule, which is a perforated capsule that, once implanted, allows interstitial fluid to flow through it. Subsequent insertion of a needle into the capsule provides direct access to the interstitial fluid for pressure measurements.

Using special microfabrication techniques, Ziaie created a miniaturized wireless pressure sensor and combined it with a Guyton-like capsule so that it could generate interstitial pressure readings without the use of a needle and that could be read remotely.

Recently, Ziaie and his team tested the device by implanting it into pancreatic tumors in mice and were able to show a decrease in interstitial tumor pressure following administration of an angiogenic inhibitor.

“This is a great example of the power of convergence science,” said Tiffani Lash, PhD, program director for sensor technologies at NIBIB. “Integrating knowledge from the life and physical sciences with engineering concepts can help solve important clinical problems. It’s about thinking creatively to generate novel ways to treat disease.”

Margot Kern
Writer/Editor
nibibpress@mail.nih.gov
Phone: 301-496-3500

Margot Kern | newswise

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>