Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we need erasable MRI scans

26.04.2018

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is through the use of contrast agents--magnetic dyes injected into the blood or given orally to patients that then travel to organs and tissues, making them easier to see. Recently, researchers have begun to develop next-generation contrast agents, such as magnetic nanoparticles, that can be directed specifically to sites of interest, such as tumors.


Caltech's Mikhail Shapiro and his colleagues have developed "erasable" MRI contrast agents that can blink off on command with ultrasound technology. As illustrated here, the contrast agents -- which consist of air-filled protein structures called gas vesicles -- give off magnetic signals. When hit with waves of sound, the gas vesicles collapse and their signals go away. This makes it easier for researchers to interpret MRI scans.

Credit: Barth van Rossum for Caltech

But there remains a problem with many of these agents: they are sometimes difficult to distinguish from our bodies' tissues, which give off their own MRI signals. For example, a researcher reading an MRI scan may not know with certainty if a dark patch near a tumor represents a contrast agent bound to the tumor, or is an unrelated signal from surrounding tissue.

Caltech's Mikhail Shapiro, assistant professor of chemical engineering, thinks he has a solution. He and his team are working on "erasable" contrast agents that would have the ability to blink off, on command, thereby revealing their location in the body.

... more about:
»MRI »MRI scans »contrast agent »vesicles

"We're developing MRI contrast agents that can be erased with ultrasound, allowing you to turn them off," says Shapiro, who is also a Schlinger Scholar and Heritage Medical Research Institute Investigator. "It's the same principle behind blinking bicycle lights. Having the lights turn on and off makes them easier to see, only in our case we just blink off the contrast agent once."

The new research was published in the February 26 advanced issue of Nature Materials, and is on the cover of the May print edition out this month. The lead author is George Lu, a postdoctoral scholar in Shapiro's lab.

"Clearly visualizing MRI contrast agents is a longtime, lingering problem in the field," says Lu. "With our new study, we are showing how it could be possible to erase the contrast agent, making it much easier to read MRI scans properly."

The new technology relies on nanoscale structures called gas vesicles, which are naturally produced by some microbes. Gas vesicles consist of a protein shell with a hollow interior and are used by the microbes as flotation devices to regulate access to light and nutrients. Previously, Shapiro and his colleagues demonstrated how gas vesicles could someday enable imaging of therapeutic bacteria and other cells in people's bodies using ultrasound. The idea would be to engineer cells of interest--such as bacterial cells used to treat gut conditions--to produce the gas vesicles. Because the hollow chambers of the vesicles bounce back sound waves in distinctive ways, the vesicles (and the cells producing them) would be easy to distinguish from surrounding tissue.

It turns out that the gas vesicles also stand out in MRI scans because the air in their chambers reacts differently to magnetic fields compared to the aqueous tissues around them. This results in a local darkening of MRI images where the gas vesicles are present.

In the new study, performed in mice, the researchers showed that gas vesicles could indeed be used as MRI contrast agents--the gas vesicles were detected in certain tissues and organs, such as the brain and liver. What's more, the gas vesicles could be turned off. When hit with ultrasound waves of a high enough pressure, the cylindrical structures "collapsed like crushed soda cans," Shapiro says, and their magnetic signals went away.

Previous studies of gas vesicles have shown that these protein structures can be genetically modified to target receptors on specific cells, such as tumor cells. Populations of gas vesicles can also be engineered differently--for example, one group might target a tumor while another would stay in the blood stream to outline blood vessels. This would allow doctors and researchers to visualize two types of tissue at once.

"We have previously shown that we can genetically engineer the gas vesicles in a variety of ways for use in ultrasound imaging," says Shapiro. "Now they have a whole new application in MRI."

###

The Nature Materials study, titled "Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures," was funded by the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation, the Dana Foundation, a Burroughs Wellcome Career Award at the Scientific Interface, a Packard Fellowship in Science and Engineering, and the Heritage Medical Research Institute. Other Caltech-affiliated authors are Arash Farhadi, Jerzy O. Szablowski (PhD '15), Audrey Lee-Gosselin, Anupama Lakshmanan, and Raymond W. Bourdeau. Samuel R. Barnes from Loma Linda University is also an author.

Media Contact

whitney clavin
wclavin@caltech.edu
626-395-1856

 @caltech

http://www.caltech.edu 

whitney clavin | EurekAlert!

Further reports about: MRI MRI scans contrast agent vesicles

More articles from Medical Engineering:

nachricht Synapses in 3D: Scientists develop new method to map brain structures
08.11.2019 | Leibniz-Institut für Photonische Technologien e. V.

nachricht The Screw That Dissolves
06.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>