Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undergrads invent cell phone screener to combat anemia in developing world

25.07.2012
Could a low-cost screening device connected to a cell phone save thousands of women and children from anemia-related deaths and disabilities?

That's the goal of Johns Hopkins biomedical engineering undergraduates who've developed a noninvasive way to identify women with this dangerous blood disorder in developing nations. The device, HemoGlobe, is designed to convert the existing cell phones of health workers into a "prick-free" system for detecting and reporting anemia at the community level.


This conceptual image illustrates how the HemoGlobe anemia screening device, slipped onto a patient's finger, would connect with a health worker's cellphone to display the test results.
Credit: JHU

The device's sensor, placed on a patient's fingertip, shines different wavelengths of light through the skin to measure the hemoglobin level in the blood. On a phone's screen, a community health worker quickly sees a color-coded test result, indicating cases of anemia, from mild to moderate and severe.

If anemia is detected, a patient would be encouraged to follow a course of treatment, ranging from taking iron supplements to visiting a clinic or hospital for potentially lifesaving measures. After each test, the phone would send an automated text message with a summary of the results to a central server, which would produce a real-time map showing where anemia is prevalent. This information could facilitate follow-up care and help health officials to allocate resources where the need is most urgent.

Soumyadipta Acharya, an assistant research professor in Johns Hopkins' Department of Biomedical Engineering and the project's faculty advisor and principal investigator, said the device could be important in reducing anemia-related deaths in developing countries. International health experts estimate that anemia contributes to 100,000 maternal deaths and 600,000 newborn deaths annually.

"This device has the potential to be a game-changer," Acharya said. "It will equip millions of health care workers across the globe to quickly and safely detect and report this debilitating condition in pregnant women and newborns."

The HemoGlobe student inventors have estimated their cell phone-based systems could be produced for $10 to $20 each. At the recent Saving Lives at Birth: A Grand Challenge for Development competition, the potential public health benefits of this device won over the judges, who awarded a $250,000 seed grant to the Johns Hopkins students' project. The event, which attracted more than 500 entrants from 60 countries, was sponsored by prominent global health organizations, including the U.S. Agency for International Development and the Bill & Melinda Gates Foundation. Only 12 entrants received seed grants.

"When we thought about the big-name corporations and nonprofit groups we were competing against, we were amazed and surprised to find out that our team had won," said George Chen, 19, of Hacienda Heights, Calif., a sophomore majoring in biomedical engineering. Chen attended the July 14 announcement in Seattle, along with Acharya and team members Noah Greenbaum and Justin Rubin.

For a biomedical engineering design team class assignment, the students spent a year brainstorming and building a prototype. The seed grant will allow the team to refine its technology and support field testing next year in Kenya by Jhpiego, a Johns Hopkins affiliate that provides global health training and services for women and their families. Jhpiego sponsored the HemoGlobe project through a partnership with the university's Center for Bioengineering Innovation and Design.

Team member Greenbaum, 21, of Watchung, N.J, a senior majoring in biomedical and electrical engineering, has continued working on the anemia system this summer.

"The first year we just focused on proving that the technology worked," he said. "Now, we have a greater challenge: to prove that it can have a real impact by detecting anemia and making sure the mothers get the care they need."

The student inventors were looking for a new way to curb a stubborn health problem in developing nations. Anemia occurs when a person has too few healthy red blood cells, which carry critical oxygen throughout the body. This is often due to a lack of iron, and therefore a lack of hemoglobin, the iron-based protein that helps red blood cells store and release oxygen. Anemic mothers face many complications before and during birth, including death from blood loss associated with the delivery. In addition, a baby that survives a birth from an anemic mother may face serious health problems.

Health officials in developing countries have tried to respond by making iron supplements widely available. According to Acharya, however, the problem of anemia remains intractable. "So we looked at it from a different angle," he said.

In places where medical care is easily accessible, doctors routinely test pregnant women for anemia and prescribe treatment, including routine iron supplementation. But in developing regions where medical help is not always nearby, the condition may go undetected. Community health workers with limited training do, however, serve these areas.

"The team members realized that every community health worker already carries a powerful computer in their pocket -- their cell phone," Acharya said. "So we didn't have to build a computer for our screening device, and we didn't have to build a display. Our low-cost device will use the existing cell phones of health workers to estimate and report hemoglobin levels."

A provisional patent covering the invention has been obtained through the Johns Hopkins Technology Transfer office.

In addition to Chen, Greenbaum and Rubin, other Whiting School of Engineering students who have participated on the team are Guilherme Barros, William Chen, Judy Doong, Phillip Oh and David Yin.

Color graphics of the invention are available; contact Phil Sneiderman.

Related links:
Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu/
Center for Bioengineering Innovation & Design: http://cbid.bme.jhu.edu/
Jhpiego: http://www.jhpiego.org/
Whiting School of Engineering: http://engineering.jhu.edu/

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht A 15-minute scan could help diagnose brain damage in newborns
15.11.2018 | Imperial College London

nachricht NIH scientists combine technologies to view the retina in unprecedented detail
14.11.2018 | NIH/National Eye Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>