Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New training method helps surgeons evaluate their own minimally invasive surgery skills

12.01.2009
Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres.

However, the training of surgeons in this field still leaves much to be desired. Researcher Magdalena Chmarra has changed this state of affairs by developing a realistic training system which records and analyses the surgeon's movements.

As a result there is now, for the first time, an objective benchmark for measuring a surgeon's basic skills in the field of minimally invasive surgery. Chmarra will receive her PhD for this research at Delft University of Technology in The Netherlands on Monday 12 January.

Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres. Despite its considerable advantages, this relatively recent surgical technique still has a number of drawbacks. One such disadvantage relates to the training of surgeons, which is still, for the most part, delivered in a rather unstructured manner and, moreover, without any objective benchmark with which to measure the progress made by trainee surgeons.

Training

Broadly speaking, there are currently two safe training methods for minimally invasive surgery. The first is the so-called box trainer, an enclosed rectangular box in which trainee surgeons can practise performing basic manipulative tasks with the surgical devices, such as picking up and moving objects. As they do this, they can be assessed by an experienced surgeon. Clearly, this is a somewhat subjective process.

The other option is the virtual reality trainer, employing computer simulations, which allows for excellent recording and analysis of the surgeon's actions. However, this training method still has the major disadvantage that it lacks realism. For example, users feel no tactile response when performing surgical tasks.

TrEndo

Thus both of these training methods have their drawbacks. The Delft doctoral candidate Magdalena Chmarra has sought to change this situation by developing a training tool that is realistic for the surgeon and at the same time records and analyses the motion of the instruments manipulated by the surgeon. This is accomplished with an inexpensive and relatively simple tracking device known as the ‘TrEndo’. A TrEndo incorporates three optical computer-mouse sensors which record the movements made by the surgeon in all directions.

The TrEndo has been extensively tested by medical staff at Leiden University Medical Centre, who rate the device highly. The movements that they performed with the TrEndo felt no different from those undertaken with the actual surgical devices.

TrEndo is currently undergoing further fine-tuning at Delft University of Technology.

Benchmarking

The TrEndo helps to identify the key factors underlying the basic skills required by surgeons, thus paving the way for objective benchmarking of their competence in the field of minimally invasive surgery. By means of motion analysis, Chmarra has therefore succeeded in arranging the basic skills of the participating trainee surgeons into a classification system which ranks them as being either expert, intermediate or beginner.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>