Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny 3-D ultrasound probe guides catheter procedures

02.09.2008
An ultrasound probe small enough to ride along at the tip of a catheter can provide physicians with clearer real-time images of soft tissue without the risks associated with conventional x-ray catheter guidance.

Duke University biomedical engineers designed and fabricated the novel ultrasound probe which is powerful enough to provide detailed, 3-D images. The new device works like an insect's compound eye, blending images from 108 miniature transducers working together.

Catheter-based procedures involve snaking instruments through blood vessels to perform various tasks, such as clearing arteries or placing stents, usually with the guidance of x-ray images.

In a series of proof-of-principle experiments in a water tank using simulated vessels, the engineers used the new ultrasound probe to guide two specific procedures: the placement of a filter within a vessel and the placement of a synthetic "patch" for aortic aneurysms. The scientists plan to begin tests of the new system in animals within the year.

"There are no technological barriers left to be overcome," said Stephen W. Smith, director of the Duke University Ultrasound Transducer Group and senior member of the research team that published the results of its latest experiments online in the journal IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. It is the cover article for the September issue.

"While we have shown that the new probe can work for two types of procedures, we believe that results will be more far-reaching," Smith said. "There are many catheter-based interventional procedures where 3-D ultrasound guidance could be used, including heart valve replacements and placement of coils in the brain to prevent stroke. Wherever a catheter can go, the probe can go."

Currently, when maneuvering a catheter through a vessel, physicians rely on x-ray images taken from outside the body and displayed on a monitor to manipulate their instruments. Often, a contrast agent is injected into the bloodstream to highlight the vessel.

"While the images obtained this way are good, some patients experience adverse reactions to the contrast agent," said research engineer Edward Light, first author of the paper and designer of the new probe. "Also, the images gained this way are fleeting. The 3-D ultrasound guidance does not use x-ray radiation or contrast agents, and the images are real-time and continuous."

Another benefit is portability, which is an important issue for patients who are too sick to be transported, since x-rays need to be taken in specially equipped rooms, Light said. The 3-D ultrasound machine is on wheels and can be moved easily to a patient's room.

Advances in ultrasound technology have made these latest experiments possible, the researchers said, by generating detailed, 3-D moving images in real-time. The Duke laboratory has a long track record of modifying traditional 2-D ultrasound – like that used to image babies in utero – into the more advanced 3-D scans. After inventing the technique in 1991, the team also has shown its utility in developing specialized catheters and endoscopes for real-time imaging of blood vessels in the heart and brain.

After testing many iterations of the design of the probe, also known as a transducer, the engineers came up with a novel approach – lining the front rim of the catheter sheath with 108 miniature transducers.

"These tiny transducers work together to create one large transducer, working much like the compound eyes of insects," Light explained.

In the first experiment, the new probe successfully guided the placement of a filter in a simulated vena cava, the large vein that carries deoxygenated blood from the lower extremities to the back to heart. Patients with clots in their legs – known as deep vein thrombosis – who cannot get clot-busting drugs often receive these filters to prevent the clots dislodging and traveling to the heart and lungs.

The second experiment involved the placement of abdominal aorta aneurysm stent grafts, which are large synthetic "tubes" used to patch weakened areas of the aorta that are at risk of bursting.

"I believe we have shown that 3-D ultrasound clearly works in a wide variety of interventional procedures," Smith said. "We envision a time in the not-too-distant future when this technology becomes standard equipment in various catheter kits."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: 3-D ultrasound Stents blood vessels catheter x-ray catheter guidance

More articles from Medical Engineering:

nachricht Implantable transmitter provides wireless option for biomedical devices
04.08.2020 | Purdue University

nachricht Certainty in just 15 minutes – researchers develop a graphene oxid based rapid test to detect infections
03.08.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>