Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TECNALIA investigates advanced biomaterials to make more reliable and hardwearing medical implants

12.11.2008
The TECNALIA Technological Corporation is taking part in the Cénit Intelimplant project, the goal of which is to develop advanced biomaterials based on innovative technologies (microtechnologies, nanotechnologies, tissue and surface engineering) for the manufacture of a new generation of implants which have greater durability and reliability, need less recuperation time and that provide data on their state and progress.

The Cénit Intelimplant project (Development of Advanced Biomaterials for a New Generation of Implants), led by the Biotechnology Institute (BTI), was one of the 16 projects approved by the Centre for Industrial Technological Development (CDTI) for the third CÉNIT programme announcement or call, within the Spanish Government INGENIO 2010 initiative.

The end goal of the project is the development of novel biomaterials which enable an extension of the functions of the implant throughout the whole life of the patient, in such a way that repeat surgical operations are avoided; the reliability and the integration of the implants are enhanced and tissue rejection avoided; the recuperation times for patients are significantly cut and the implants are operational in a minimum time; the state and progress of the implant monitored, both in the short term and in the long term after the surgical operation; the new materials will indicate any anomaly and enable the application of preventative therapies; and finally, they will simplify surgical practice, progressing to minimally invasive surgery and the automation of stages during an operation.

The project will be undertaken by a consortium made up of 15 companies, including state-of-the-art Spanish enterprises in the field of implants, BTI Biotechnology Institute, SURGIVAL, LAFITT, SOCINSER and IHT, as well as the most important ones in the value chain of their manufacture: KERAMAT, Laboratories INIBSA, BIOKER Research, METAL-ESTALKI, BIOVAC, DMP, i2m-DESIGN, ANÁLISIS & SIMULACIÓN (AyS), IHS WEIGLING and GEM-IMAGING.

The Intelimplant project involves groups belonging to 16 public and private research bodies: TECNALIA, the Institute of Biomechanics of Valencia-IBV, the Institute of Polymers Science and Technology (ICTP-CSIC), the University of León, the University of Vigo, the University of Málaga, the National Microelectronics Centre (CNM-CSIC), the Institute for Corpuscular Physics (IFIC-CSIC), the Institute of Ceramica Galicia, the Polytechnic University of Catalunya (UPC), PRODINTEC, INCAR, ICMM-CSIC, the University of Barcelona, the Bosch i Gimpera Foundation and the Chemical Institute of Sarriá (IQS).

Carrying out this project will also enable fomenting synergies and reducing project development times through drawing up a joint-working framework between the various multidisciplinary players within the Science-Technology-Enterprise network.

These players have knowledge and experience that complement each other and which are present throughout the whole value chain of the sector and, as a consequence, will give rise to enhanced competitiveness amongst the participating companies, thus reducing excessive external dependence, readdressing the unfavourable situation of our country as regards the transfer of research results by OPIs and CITs to companies in this field of advanced biomaterials, and improving the scientific-technical level of the enterprises taking part in the project.

All this with the target of being in a more advantageous position to participate in international programmes of cooperation in scientific research and technological development, such as the FP VII.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1941&hizk=I

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>