Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for deep brain stimulation surgery proves accurate and safe

06.06.2013
Surgery has been used for Parkinson’s disease and familial tremors, and also shows promise for other disorders

The surgeon who more than two decades ago pioneered deep brain stimulation surgery in the United States to treat people with Parkinson's disease and other movement disorders has now developed a new way to perform the surgery — which allows for more accurate placement of the brain electrodes and likely is safer for patients.

The success and safety of the new surgical technique could have broad implications for deep brain stimulation, or DBS, surgery into the future, as it may increasingly be used to help with a wide range of medical issues beyond Parkinson’s disease and familial tremors.

The new surgery also offers another distinct advantage: patients are asleep during the surgery, rather than being awake under local anesthesia to help surgeons determine placement of the electrodes as happens with the traditional DBS surgery.

A study detailing the new surgical technique is being published in the June 2013 edition of the Journal of Neurosurgery, and has been published online at the journal's website.

"I think this will be how DBS surgery will be done in most cases going forward," said Kim Burchiel, M.D., F.A.C.S., chair of neurological surgery at Oregon Health & Science University and the lead author of the Journal of Neurosurgery article. "This surgery allows for extremely accurate placement of the electrodes and it's safer. Plus patients don't need to be awake during this surgery -- which will mean many more patients who can be helped by this surgery will now be willing to consider it."

DBS surgery was first developed in France in 1987. Burchiel was the first surgeon in North America to perform the surgery, as part of a Food and Drug Administration-approved clinical trial in 1991.

The FDA approved the surgery for "essential tremor" in 1997 and for tremors associated with Parkinson's disease in 2002. The surgery has been performed tens of thousands of times over the last decade or so in the United States, most often for familial tremor and Parkinson's disease. Burchiel and his team at OHSU have performed the surgery more than 750 times.

The surgery involves implanting very thin wire electrodes in the brain, connected to something like a pacemaker implanted in the chest. The system then stimulates the brain to often significantly reduce the tremors.

For most of the last two decades, the DBS patient was required to be awake during surgery, to allow surgeons to determine through monitoring the patient’s symptoms and getting other conscious patient feedback whether the electrodes were placed in the right spots in the brain.

But the traditional form of the surgery had drawbacks. Many patients who might have benefitted weren't willing to undergo the sometimes 4 to 6 hour surgery while awake. There also is a small chance of hemorrhaging in the brain as the surgeon places or moves the electrodes to the right spot in the brain.

The new technique uses advances in brain imaging in recent years to place the electrodes more safely, and more accurately, than in traditional DBS surgery. The surgical team uses CT scanning during the surgery itself, along with an MRI of the patient's brain before the surgery, to precisely place the electrodes in the brain, while better ensuring no hemorrhaging or complications from the insertion of the electrode.

The Journal of Neurosurgery article reported on 60 patients who had the surgery at OHSU over an 18-month period beginning in early 2011.

"What our results say is that it's safe, that we had no hemorrhaging or complications at all — and the accuracy of the electrode placement is the best ever reported," Burchiel said.

Burchiel and his team have done another 140 or so surgeries with the new procedure since enrollment in the study ended. OHSU was the first center to pioneer the new DBS procedure, but other surgical teams across the U.S. are learning the technique at OHSU, and bringing it back to their own centers.

The positive results with the new DBS technique could have ramifications as medical researchers nationwide continue to explore possible new uses for DBS surgery. DBS surgery has shown promising results in clinical trials with some Alzheimer's patients, with some forms of depression and even with obesity.

If the early promising results for these conditions are confirmed, the number of people who might be candidates for DBS surgery could expand greatly, Burchiel said.

The length of the new surgery for the 60 patients involved in the study was slightly longer than traditional DBS surgery. But as Burchiel and his team have developed the new surgical technique, the new DBS surgeries are usually much shorter, often taking half the time of the more traditional approach. Given that, and that the electrodes are placed more accurately and the surgery is cheaper to perform, the new DBS surgery likely will be the technique most surgeons will use in coming years, Burchiel said.

DBS surgery often helps significantly reduce tremors in patients with familial tremor and tremors and other symptoms in Parkinson’s disease. A parallel study is ongoing at OHSU to assess how symptoms of the patients have improved since their DBS surgery using this new method.

Burchiel's co-authors on the Journal of Neurosurgery article were Ahmed Raslan, M.D., assistant professor of neurological surgery at OHSU, Shirley McCartney, Ph.D., assistant professor of neurological surgery at OHSU, and Albert Lee, M.S., M.D., a fellow in neurological surgery at OHSU.

About the OHSU Brain Institute

The Oregon Health & Science University Brain Institute is a national neuroscience leader in patient care, research and education. With more than 1,000 brain scientists and specialists, OHSU is home to one of the largest communities of brain and central nervous system experts in the nation. OHSU Brain Institute scientists have won national recognition for breaking new ground in understanding Alzheimer’s disease and for discoveries that have led to new treatments for Parkinson’s disease, multiple sclerosis, stroke and other brain disorders and diseases.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission. OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Medical Engineering:

nachricht A 15-minute scan could help diagnose brain damage in newborns
15.11.2018 | Imperial College London

nachricht NIH scientists combine technologies to view the retina in unprecedented detail
14.11.2018 | NIH/National Eye Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>