Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Potential Breakthrough in Hearing Technology

19.11.2013
Computer processes sound, filters out background noise for the hearing-impaired

Computer engineers and hearing scientists at The Ohio State University have made a potential breakthrough in solving a 50-year-old problem in hearing technology: how to help the hearing-impaired understand speech in the midst of background noise.

In the Journal of the Acoustical Society of America, they describe how they used the latest developments in neural networks to boost test subjects’ recognition of spoken words from as low as 10 percent to as high as 90 percent.

The researchers hope the technology will pave the way for next-generation digital hearing aids. Such hearing aids could even reside inside smartphones; the phones would do the computer processing, and broadcast the enhanced signal to ultra-small earpieces wirelessly.

Several patents are pending on the technology, and the researchers are working with leading hearing aid manufacturer Starkey, as well as others around the world to develop the technology.

Conquering background noise has been a “holy grail” in hearing technology for half a century, explained Eric Healy, professor of speech and hearing science

and director of Ohio State’s Speech Psychoacoustics Laboratory.

The desire to understand one voice in roomful of chatter has been dubbed the “cocktail party problem.”

“Focusing on what one person is saying and ignoring the rest is something that normal-hearing listeners are very good at, and hearing-impaired listeners are very bad at,” Healy said. “We’ve come up with a way to do the job for them, and make their limitations moot.”

Key to the technology is a computer algorithm developed by DeLiang “Leon” Wang, professor of computer science and engineering, and his team. It quickly analyzes speech and removes most of the background noise.

“For 50 years, researchers have tried to pull out the speech from the background noise. That hasn’t worked, so we decided to try a very different approach: classify the noisy speech and retain only the parts where speech dominates the noise,” Wang said.

In initial tests, Healy and doctoral student Sarah Yoho removed twelve hearing-impaired volunteers’ hearing aids, then played recordings of speech obscured by background noise over headphones. They asked the participants to repeat the words they heard. Then they re-performed the same test, after processing the recordings with the algorithm to remove background noise.

They tested the algorithm’s effectiveness against “stationary noise”—a constant noise like the hum of an air conditioner—and then with the babble of other voices in the background.

The algorithm was particularly affective against background babble, improving hearing-impaired people’s comprehension from 25 percent to close to 85 percent on average. Against stationary noise, the algorithm improved comprehension from an average of 35 percent to 85 percent.

For comparison, the researchers repeated the test with twelve undergraduate Ohio State students who were not hearing-impaired. They found that scores for the normal-hearing listeners without the aid of the algorithm’s processing were lower than those for the hearing-impaired listeners with processing.

“That means that hearing-impaired people who had the benefit of this algorithm could hear better than students with no hearing loss,” Healy said.

A new $1.8 million grant from the National Institutes of Health will support the research team’s refinement of the algorithm and testing on human volunteers.

The algorithm is unique, Wang said, because it utilizes a technique called machine learning. He and doctoral student Yuxuan Wang are training the algorithm to separate speech by exposing it to different words in the midst of background noise. They use a special type of neural network called a “deep neural network” to do the processing—so named because its learning is performed through a deep layered structure inspired by the human brain.

These initial tests focused on pre-recorded sounds. In the future, the researchers will refine the algorithm to make it better able to process speech in real time. They also believe that, as hearing aid electronics continue to shrink and smartphones become even more common, phones will have more than enough processing power to run the algorithm and transmit sounds instantly—and wirelessly—to the listener’s ears.

Some 10 percent of the population—700 million people worldwide—suffer from hearing loss. The problem increases with age. In a 2006 study, Healy determined that around 40 percent of people in their 80s experience hearing loss that is severe enough to make others’ speech at least partially unintelligible.

One of them is Wang’s mother, who, like most people with her condition, has difficulty filtering out background noise.

“She’s been one of my primary motivations,” Wang said. “When I go visit her, she insists that only one person at a time talk at the dinner table. If more than one person talks at the same time, she goes absolutely bananas because she just can’t understand. She’s tried all sorts of hearing aids, and none of them works for this problem.”

“This is the first time anyone in the entire field has demonstrated a solution,” he continued. “We believe that this is a breakthrough in the true sense of the word.”

The technology is currently being commercialized and is available for license from Ohio State’s Technology Commercialization and Knowledge Transfer Office.

Contacts: Eric Healy, (614) 292-8973; Healy.66@osu.edu
Leon Wang, (614) 292-6827; Wang.77@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor's note: Audio files are available to accompany the story.

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>