Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Somatom Force now further opens computed tomography to highly sensitive patient groups

14.11.2013
- World premiere of high-end CT at the Medical Faculty Mannheim

- Patients with renal insufficiency benefit from significant reductions in administered contrast medium

- Early detection examinations and functional diagnoses with up to 50 percent lower radiation dose that can help make treatment decisions easier

- Minimized artifacts in cardiac and thoracic examinations

Somatom Force – the new computer tomograph (CT) from Siemens – today had its first public presentation worldwide at the University Medical Centre Mannheim, Germany. In its first few weeks of clinical use at Mannheim's Institute for Clinical Radiology and Nuclear Medicine, the third generation of Dual Source computed tomography (CT scanners each with two radiation tubes and detectors) enabled considerably quicker and more precise diagnoses at reduced doses.


Somatom Force – the new computer tomograph (CT) from Siemens – had its first public presentation worldwide at the University Medical Centre Mannheim, Germany.

This high-end CT offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. "In a general population with a very complex age and disease structure, this new CT scanner can solve the problems presented by every radiological situation for virtually every patient," says Institute Director Professor Stefan Schönberg.

The high-end CT Somatom Force offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Less contrast medium reduces burden on the kidneys

"Somatom Force negates many aspects of computed tomography that up to now have limited its application. For example, the administration of contrast medium that proves problematic for many patients can be greatly lowered," says Walter Märzendorfer, CEO of Computed Tomography and Radiation Oncology at Siemens Healthcare. Up to 20 percent of patients suffer from renal insufficiency. Contrast medium containing iodine can place extra burden on the kidneys of older patients and those with chronic illnesses in particular. Initial examinations in Mannheim show that the average quantity of contrast medium administered in thoracic examinations can be lowered from between 90 and 110 milliliters (ml) to between 25 and 35 ml. This is made possible by the two Vectron X-ray tubes in Somatom Force, which enable routine examinations at particularly low tube voltages of 70 to 100 kilovolts. As the contrast-to-noise ratio rises, the amount of contrast medium can be lowered accordingly.

Precise diagnoses for individual treatment

Somatom Force can also deliver considerable added value in treatment control. 4D imaging, which shows the function of organs and vessels next to their morphology, is particularly important here because it allows additional information to be gleaned about primary tumors and metastases. A disadvantage of this dynamic perfusion is that – up to now – high dose values of more than 50 millisievert (mSv) in certain cases are required e.g. for liver imaging. This dose can now be more than halved with Somatom Force. In one of the Mannheim cases, just 14.7 mSv was required. Such values enable the procedure to be used routinely, thus enabling quicker and more well-founded decisions to be made about which treatment is most suitable for an individual patient.

In the case of novel but also very expensive anti-angiogenesis therapies, which inhibit the formation of blood vessels in the tumor through the administration of medication, Somatom Force can be used to determine precisely at a much earlier stage whether the treatment is working. If it is not, physicians can move to a more effective treatment more rapidly. This improves the cancer patient's chances of receiving effective treatment as quickly as possible – and thus of surviving. It can also help to ensure that medication costing several thousand euros per month is deployed more efficiently and so to reduce the overall cost of the treatment. Usually, long-term CT monitoring is used to identify the correct time to potentially switch treatments. The significantly reduced cumulated radiation dose with Somatom Force is of enormous advantage here. "This computer tomograph means that medical imaging is no longer restricted to traditional diagnostics," explains Professor Schönberg. "As radiologists, we can now work toward the ultimate goal of all medical intervention: The patient's recovery."

Early cancer detection at up to 50 percent lower dose

The NLST lung cancer screening study conducted in the U.S. has prompted a realignment of priorities in cancer prevention: The study showed that mortality rates can be reduced by 20 percent if early lung cancer detection is performed with low-dose CT rather than conventional chest X-rays. Somatom Force is particularly suitable for such early detection examinations due to its previously unattained low dose values. Up to 50 percent lower than that of previous high-end CTs, this radiation dose can be attributed to the "Turbo Flash Mode" of Somatom Force and the use of two special spectral filters – Selective Photon Shields – which optimize the X-ray spectrum and thus significantly improve the air/soft-tissue contrast. Examinations performed at the University Medical Centre Mannheim show that dose values of 0.1 mSv for a lung scan can be achieved with Somatom Force – even in routine clinical situations. "With Somatom Force, there are almost no more contraindications for computed tomography," says PD Dr. Thomas Henzler, Head of Cardio-Thoracic Imaging at the University Medical Centre Mannheim.

Thorax diagnostics without breath-hold

Another advantage in pulmonary diagnostics is the enlarged field of view (50 centimeters) of the "Turbo Flash Mode" on Somatom Force, which covers the entire organ. This extremely quick scan mode with an acquisition rate of almost 400 millimeters per second allows the entire thorax to be depicted in around one second. If a larger area of the body is to be scanned, thanks to the fastest acquisition rate on the market (737 mm/s) entire thoracic-abdominal examinations can even be performed in just one second. This means that patients may not need to hold their breath. With Somatom Force, even high heart rates do not lead to disruptive motion artifacts in clinical images, a fact indicated by images taken of a female patient with 90 heartbeats per minute and no medicinal measures to lower her heart rate.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2013 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 2.0 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Further details are available from the local Siemens organizations.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201311007e

Contact
Mr. Ulrich Künzel
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-3473
Ulrich.Kuenzel​@siemens.com

Ulrich Künzel | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare
http://www.siemens.com/press/Somatom-Force

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>