Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers

06.04.2010
Nanoparticle-core polymer holds promise as an absorbable, weight-bearing replacement for traditional graft materials

Orthopedic surgeons are often hamstrung by less-than-ideal grafting material when performing surgeries for complex bone injuries resulting from trauma, aging or cancer.

Conventional synthetic bone grafts are typically made of stiff polymers or brittle ceramics, and cannot readily conform to the complex and irregular shapes that often result from injury; in addition, they often require metallic fixation devices that require open surgeries to insert and remove. Ideally, a scaffolding graft would conform to complex shapes of an injury site, provide weight-bearing support, require less invasive surgical delivery, and ultimately disappear when no longer needed.

Using a nanoparticle core, Jie Song, PhD, assistant professor of orthopedics & physical rehabilitation and cell biology at the University of Massachusetts Medical School, and postdoctoral fellow Jianwen Xu, have fashioned a new type of tissue and bone scaffolding polymer that addresses a number of these long-standing limitations. Research published in the online Early Edition of Proceedings of the National Academy of Sciences, describes the development of a class of heat-activated smart materials that combine tissue-like properties and strength that are clinically safe to deploy and able to integrate with surrounding tissue.

The key feature of the new polymer is its heat-activated malleability and shape memory. Using CT scans and MRI images of the injury site, Song envisions physicians creating a polymer mold of the scaffolding needed to stabilize a skeletal injury site, in the lab, prior to surgery. Heat activated at a safe 50°C, the smart polymer could then be reshaped to a more compressed form suitable for insertion in the body through a small, minimally invasive incision. Once at the injury site, the idea is to then thermally re-activate the polymer to cause it to revert to its original, pre-molded shape in seconds, according to Song.

In addition to providing mechanical stabilization to the skeletal structure, because the biodegradable material is similar to those used in dissolvable sutures, it can be safely reabsorbed by the body as it breaks down over time. Therefore, there is no need for a second surgery to remove the implant. Additionally, as the scaffolding degrades, the polymer provides a porous structure that promotes tissue growth and integration. At the same time, the polymer has the ability to deliver therapeutics to accelerate new bone growth and integration.

"Strong and resorbable smart implants could have paradigm-changing impact on a number of surgical interventions that currently rely on the use of more invasive and less effective metallic cages, fixators and stents," said Song. "From spinal fusion to alleviate chronic lower back pain, vertebroplasty for treating vertebral fractures to angioplasty for widening narrowed or obstructed blood vessels, there are tremendous clinical applications for smart polymers."

Song and colleagues are testing the safety and efficacy of the material in animal models, which they hope will pave the way for future clinical trials.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Medical Engineering:

nachricht MoreGrasp: significant research results in the field of thought-controlled grasp neuroprosthetics
17.09.2018 | Technische Universität Graz

nachricht Wearable ultrasound patch monitors blood pressure deep inside body
13.09.2018 | University of California - San Diego

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>