Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart micro chips may optimise human vision

11.05.2015

SIGHTS SET ON INNOVATION: New Approaches to Vision with Microchips Holds out Prospects for the Blind

To date, chip-based retinal implants have only permitted a rudimentary restoration of vision. However, modifying the electrical signals emitted by the implants could change that.


Implanting micro chips into eyes is reality. Optimising their (visual) performance is the focus of a current FWF project.

© Shawn Kelly / Boston Retinal Implant Project

This is the conclusion of the initial published findings of a project sponsored by the Austrian Science Fund FWF, which showed that two specific retinal cell types respond differently to certain electrical signals – an effect that could improve the perception of light-dark contrasts.

"Making the blind really see – that will take some time", says Frank Rattay of the Institute of Analysis and Scientific Computing at the Vienna University of Technology – TU Wien. "But in the case of certain diseases of the eyes, it is already possible to restore vision, albeit still highly impaired, by means of retinal implants."

PULSE EMITTER

To achieve this, microchips implanted in the eye convert light signals into electrical pulses, which then stimulate the cells of the retina. One major problem with this approach is that the various types of cells that respond differently to light stimuli in a healthy eye are all stimulated to the same degree. This greatly reduces the perception of contrast.

"But it might be possible", Rattay says, "to stimulate one cell type more than the other by means of special electrical pulses, thus enhancing the perception of contrast."

Within the framework of an FWF project, he and his team have discovered some promising approaches. Together with colleagues Shelley Fried of Harvard Medical School and Eberhard Zrenner of University Hospital Tübingen, he is now corroborating the simulated results with experimental findings.

SIMULATED & STIMULATED

With the help of a sophisticated computer simulation of two retinal cell types, Rattay and his team have discovered something very exciting. They found that by selecting specific electrical pulses, different biophysical processes can actually be activated in the two cell types. For example, monophasic stimulation, where the electrical polarity of the signal from the retinal implant does not change, leads to stronger depolarisation in one cell type than in the other.

"Depolarisation means that the negative charge that prevails in cells switches briefly to a positive charge. This is the mechanism by which signals are propagated along nerves", Rattay explains. This charge reversal was significantly weaker in the other cell type. In their simulation, the team also found as much as a fourfold difference in the response of calcium concentrations in the two cell types to a monophasic signal.

ON AND OFF

"Calcium is an important signal molecule in many cells and plays a key role in information processing. For this reason, we specifically considered calcium concentrations in our simulation by considering the activity of membrane proteins involved in calcium transport", explains Paul Werginz, a colleague of Rattay and lead author of the recently published paper. Concretely, the team devised models of two retinal cell types that are designated as ON and OFF cells.

ON cells react more strongly when the light is brighter at the centre of their location, while OFF cells react more strongly when the light is more intense at the edges. The two cell types are arranged in the retina in such a way as to greatly enhance contrast. The problem is that instead of light pulses, conventional retinal implants emit electrical pulses that elicit the same biochemical reactions in both cell types. Consequently, contrast perception is greatly reduced. However, Rattay's work shows that this needn't be the case.

SHAPE AS A FACTOR

Rattay's research group also found that the shape of the individual ON and OFF cells affect the way in which the signals are processed. For example, the different length of the two cell types is an important factor. This too, Rattay believes, could be an important finding that might help to significantly improve the performance of future retinal implants by modulating the electrical signals they emit. Rattay and his team are in hot pursuit of this goal in order to develop strategies that will allow many blind people to recognise objects visually.


Personal details
Frank Rattay is a professor at the Institute of Analysis and Scientific Computing of the Vienna University of Technology, where he heads the Computational Neuroscience and Biomedical Engineering group. For decades he has been publishing internationally recognised work on the generation and optimisation of artificial nerve signals.

Link
Original publication: Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Research Dec. 2014. P. Werginz, H. Benav, E. Zrenner, F. Rattay. DOI: dx.doi.org/10.1016/j.visres.2014.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25499837

Video showing the stimulation of nerve cells in the retina: https://www.youtube.com/watch?v=wQyURbqOTYg

Image and text available from Monday, 11 May 2015, from 10.00 am CEST at:
http://www.fwf.ac.at/en/research-in-practice/project-presentations/2015/pv2015-kw20


Scientific Contact:
Prof. Frank Rattay
Vienna University of Technology Institute of Analysis and Scientific Computing Wiedner Hauptstr. 8–10
1040 Vienna, Austria
T +43 / 1 / 58 801 - 10114
E frank.rattay@tuwien.ac.at
W https://www.tuwien.ac.at

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D – Public Relations for Research & Education

More articles from Medical Engineering:

nachricht Reinforcement learning expedites 'tuning' of robotic prosthetics
18.01.2019 | North Carolina State University

nachricht Powerful microscope captures first image of nanoscaffold that promotes cell movement
14.01.2019 | Sanford Burnham Prebys Medical Discovery Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>