Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SKINSPECTION – Hybrid Imaging for Skin Diagnosis

08.03.2012
In the context of the SKINSPECTION project, a European consortium has developed a novel multimodal hybrid diagnostic imaging system for the skin with the capability to perform non-invasive high resolution three-dimensional imaging in-vivo.

The incidence of skin cancer in Europe, US and Australia is rising rapidly. One in five will develop some form of skin cancer during the lifetime. A person has a 1:33 chance to develop melanoma, the most aggressive skin cancer.

Melanoma is the second most common cancer in women aged 20-29, and the sixth most common cancer in men and women. In 2007, more than 1 million new cases were diagnosed in the US alone.

About 90% of skin cancers are caused by ultraviolet (UV) sunlight. A significant improvement of the current diagnostic tools of dermatologists is required in order to identify dermal disorders at a very early stage as well as to monitor directly the effects of treatment.

In the context of the SKINSPECTION project, a European consortium has developed a novel multimodal hybrid diagnostic imaging system with the capability to perform non-invasive high resolution three-dimensional imaging in-vivo.

The SKINSPECTION approach combines two-photon imaging with time-correlated single photon detection, autofluorescence lifetime imaging, high-frequency ultrasound and optoacoustic imaging. The innovative combination of these modalities allows to obtain a wide-field view with quantitative depth information of skin lesions and a close-look into particular intra-tissue compartments with quantitative hyperspectral information and subcellular resolution. The goal of the project is to provide a novel unique tool for early diagnosis and treatment control of skin cancer and skin disease.

For achieving this objective, two systems for microscopic and macroscopic imaging of lesions were developed in the last 3 years by the partners JenLab GmbH and Imperial College London (two-photon microscopy/FLIM) and Fraunhofer IBMT (Fraunhofer Institute for Biomedical Engineering) and kibero GmbH (optoacoustic/ultrasound imaging). The systems were successfully certified for clinical studies and are currently being evaluated for imaging of skin lesions in a bicentric clinical trial at Hammersmith Hospital and Universita di Modena.

Contact:

Dr. Marc Fournelle
Biomedical Ultrasound Research
Fraunhofer IBMT
Tel: +49 6894 / 980-220
Fax: +49 6894 / 980-234

Annette Maurer | Fraunhofer-Institut
Further information:
http://www.skinspection-fp7.eu/
http://www.ibmt.fraunhofer.de/en.html
http://www.ibmt.fraunhofer.de/en/Fields-of-work/ibmt-ultrasound/ibmt-biomedical-ultrasound-research.html

More articles from Medical Engineering:

nachricht Researchers demonstrate first example of a bioelectronic medicine
09.10.2018 | Northwestern University

nachricht Screening can detect aggressive breast cancer earlier
05.10.2018 | Westfälische Wilhelms-Universität Münster

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>