Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple measurement method from Dresden improves accuracy in proton beam therapy

22.09.2015

Proton beams are new high-precision weapons in the fight against cancer. However, uncertainty with regard to the range of the beams has prevented the full exploitation of the potential of this method until now. Researchers all over the world are therefore looking for ways to measure the exact range during a course of treatment. Scientists at the National Center for Radiation Research in Oncology – OncoRay and at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have succeeded in developing a surprisingly simple solution. Initial preclinical tests have already gone well.

A proton beam is similar to a bullet in that it has a certain projectile range. The power of destruction of the charged particles is greatest shortly before they stop. "The effect could be concentrated on a specific point in a human body – in our case on a tumor," explained Dr. Guntram Pausch of the OncoRay center.


Tumors can be precisely targeted with proton beam therapy. Dresden-based scientists are looking for ways of monitoring the course of the beam in real time.

HZDR / AIFilm

"In this way it is possible to inflict severe damage on the diseased cells and yet leave the surrounding healthy tissue unscathed." The depth of penetration depends on the initial speed of the beams and the composition of the tissue – and herein lies the challenge, as the radiation expert explained.

"Even a trifle like a stuffed nose in the preliminary examination can distort the data for the treatment plan and, later on, this will mean that the beam will not stop right on target. Therefore we have to consider safety margins around the tumor during the treatment."

Up to now it has only been possible to reduce this element of uncertainty with the aid of computed tomography before the treatment or indirectly by assessing the effect of the radiation after the treatment. This is why the Dresden-based scientists are looking for a way to measure the range of the particle beam in real time. Gamma radiation is thought to be a helpful means in this respect.

This type of radiation is generated by nuclear reactions triggered by the protons on their journey through the tissue. "The existing methods attempt to measure this gamma radiation using complex and expensive detector systems in order to track the journey of the protons," said Pausch, summarizing the latest research endeavors. "It will take another few years before this can be used in the hospitals."

He developed, therefore, together with Dr. Fine Fiedler of the Helmholtz-Zentrum Dresden-Rossendorf and her team an alternative method called "Prompt Gamma Timing". This new method is based on a time measurement for which just one detector is needed.

Rapid identification of nonconformities

The scientists focus on a fundamental physical effect: the protons need a certain amount of time to reach the place where they develop their greatest destruction potential. With the new method they, therefore, measure the time span between the point at which the beam enters the body and the point at which the gamma radiation hits the detector. "If the measured time spectra differ from the ones previously calculated, then the beam does not hit its target with sufficient accuracy," added Pausch.

"In this case we would notice this immediately, and could adapt the radiation to the new parameters." In order to confirm their assumptions, the researchers tested the method with the world market leader in proton beam therapy systems, Ion Beam Applications (IBA).

To do this, they went to the West German Proton Therapy Centre in Essen where they treated test objects with proton beams as normally used in radiation therapy. In these experiments the scientists were able to detect deviations of just a few millimeters with their method. On this basis, the safety margins around the tumor could be decreased, the effectiveness of the treatment increased, and at the same time healthy tissue could be still better protected.

However, the researchers also studied factors which may limit the accuracy of the method, as Guntram Pausch explained. Nevertheless, he sees great potential for the approach. "As the experiments have shown, our method could be applied in order to rule out appreciable deviations from the treatment plan during the therapy."

Guntram Pausch, whose OncoRay group "In-vivo Dosimetry for New Types of Radiation" is funded by the German Federal Ministry of Education and Research (BMBF), sees in the new technology a fast and feasible way of providing a method of treatment verification for clinical use.

"Our approach could tide us over until more elaborate detector systems have been developed and tested." Until the end of this year, Pausch and his team want to conduct tests on phantoms, which model the human tissue and organ structure. Should the method also prove reliable in these trials, it could soon make the leap to day-to-day clinical practice.

Background: The University Hospital Carl Gustav Carus Dresden is the first institute in Eastern Germany to back radiotherapy with protons in the fight against cancer. The first courses of treatment on tumor patients began in the middle of December 2014. The plan is now to expand the capacity gradually to 400 to 500 patients per year.

There are two other university hospitals in Germany besides Dresden which are offering the proton beam therapy, namely the Heidelberg Ion-Beam Therapy Center and the West German Proton Therapy Centre in Essen. The Dresden complex is used for both patient care and for research. Therefore, the University Hospital Carl Gustav Carus has joined forces with the OncoRay center and the HZDR to form the University Proton Therapy Dresden (UPTD).

_Publication:
F. Hueso-González, W. Enghardt, F. Fiedler, C. Golnik, G. Janssens, J. Petzoldt, D. Prieels, M. Priegnitz, K. Römer, J. Smeets, F. Vander Stappen, A. Wagner, G. Pausch, „First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility”, Physics in Medicine and Biology 60 (2015) 6247–6272 (DOI:10.1088/0031-9155/60/16/6247)

_Further information:
Dr. Guntram Pausch
National Center for Radiation Reseach in Oncology – OncoRay
Phone +49 351 458-7414 | E-Mail: guntram.pausch@oncoray.de

Dr. Fine Fiedler
Institute of Radiation Physics at HZDR
Phone +49 351 260-2973 | E-Mail: f.fiedler@hzdr.de

_Media contact:
Simon Schmitt | Science editor
Phone +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden, Germany | www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is conducting research in the areas of energy, health, and matter. The following set of questions provides the focal point for this research:

• How can energy and resources be utilized in an efficient, safe, and sustainable way?
• How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
• How do matter and materials behave under the influence of strong fields and in smallest dimensions?

Since 2011, the HZDR has been a member of the Helmholtz Association, Germany's largest scientific organization. Some 1,100 employees are working at one of four research sites in Dresden, Leipzig, Freiberg, and Grenoble/France - approximately 500 of HZDR employees are scientists, including 150 Ph.D. students.

Weitere Informationen:

http://www.hzdr.de/presse/gamma_timing

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Further reports about: HZDR Radiation accuracy detector gamma radiation healthy tissue proton beam protons treatment plan

More articles from Medical Engineering:

nachricht Synapses in 3D: Scientists develop new method to map brain structures
08.11.2019 | Leibniz-Institut für Photonische Technologien e. V.

nachricht The Screw That Dissolves
06.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>