Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Siemens mammography system lowers radiation dose up to 30 percent

26.11.2012
Siemens Healthcare is launching the Mammomat Inspiration Prime Edition – the first mammography system that lowers patient dose up to 30 percent without compromising image quality.

The Mammomat Inspiration Prime Edition lowers dose by replacing the standard scatter radiation grid with a new algorithm for progressive image reconstruction. This new algorithm identifies scatter-causing structures and calculates a corrected image, enabling complete use of primary radiation so physicians can achieve high-quality images with less dose. The development of innovative products like the digital full-field Mammomat Inspiration is a goal of the Siemens Healthcare Sector's global "Agenda 2013" initiative.



In digital X-ray breast imaging, radiation passes through the examined breast to a detector. Primary radiation supplies the information needed to produce the X-ray image, while scattered radiation is absorbed by special grids positioned between the breast and the detector. Unfortunately, these scatter grids also absorb part of the all-important primary radiation, forcing physicians to use a higher dose to obtain images of desired quality. Since mammography means regular screening of healthy women, minimizing dose is extremely important.

Siemens' new reconstruction algorithm for the Mammomat Inspiration system – known as Prime (Progressive Reconstruction, Intelligently Minimizing Exposure) – eliminates the need for the conventional scatter radiation grid. The Prime algorithm subsequently corrects the scattered radiation by identifying scatter-causing structures and recalculating the image. The primary radiation that radiologists rely upon remains intact. Therefore, a grid is no longer necessary, and lower doses are sufficient to produce high-quality images. The grid-free imaging technology of the Mammomat Inspiration Prime Edition can reduce radiation dose up to 30 percent compared to its predecessor model, depending on the thickness of the patient's breast tissue.

Shipping the first quarter of 2013, the Mammomat Inspiration Prime Edition is based on the modular Mammomat Inspiration platform for screening, diagnostics, biopsy, and tomosynthesis used by hospitals and physicians' offices since 2007. Facilities have the option of purchasing the basic equipment, upgrading biopsy or tomosynthesis later as the need arises.

The software-driven Mammomat Inspiration Prime Edition demonstrates the innovative power of Siemens Healthcare and meets a goal of the global "Agenda 2013" initiative, which the Siemens Healthcare Sector unveiled in November 2011. The initiative defines plans of action to be implemented within two years in the areas of innovation, competitiveness, regional presence, and human resource development.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products mentioned here are not commercially available in all countries. Due to regulatory reasons the future availability in any country cannot be guaranteed. Further details are available from the local Siemens organizations.

Tomosynthesis is not available in the U.S.

Reference Number: HCP201211004e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
kathrin.schmich@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>