Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered paper-based 'SPEDs' may lead to new medical-diagnostic tools

23.08.2017

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded test results, making it easy for non-experts to understand.

"You could consider this a portable laboratory that is just completely made out of paper, is inexpensive and can be disposed of through incineration," said Ramses V. Martinez, an assistant professor of industrial and biomedical engineering at Purdue University. "We hope these devices will serve untrained people located in remote villages or military bases to test for a variety of diseases without requiring any source of electricity, clean water, or additional equipment."


This new paper-based diagnostic device detects biomarkers and identifies diseases by performing electrochemical analyses, and the assays change color to indicate specific test results. The device can plug into a handheld potentiostat, at left, to automate the diagnostic tests so that they can be performed by untrained users. (Purdue University photo/Aniket Pal) A publication-quality image is available at https://news.uns.purdue.edu/images/2017/martinez-potentiostat.jpg

Credit: Purdue University photo/Aniket Pal

The self-powered, paper-based electrochemical devices, or SPEDs, are designed for sensitive diagnostics at the "point-of-care," or when care is delivered to patients, in regions where the public has limited access to resources or sophisticated medical equipment.

"SPEDs are inexpensive, lightweight, ?exible and easy to use," Martinez said.

Research findings are detailed in a paper appearing on Aug. 22 in Advanced Materials Technologies. A YouTube video is available at https://youtu.be/dOBTO8ScTe8.

The test is initiated by placing a pinprick of blood in a circular feature on the device, which is less than two-inches square. SPEDs also contain "self-pipetting test zones" that can be dipped into a sample instead of using a finger-prick test.

The top layer of the SPED is fabricated using untreated cellulose paper with patterned hydrophobic "domains" that define channels that wick up blood samples for testing. These "micro?uidic channels" allow for accurate assays that change color to indicate specific testing results. A machine-vision diagnostic application also was created to automatically identify and quantify each of these "colorimetric" tests from a digital image of the SPED, perhaps taken with a cellphone, to provide fast diagnostic results to the user and to facilitate remote-expert consultation.

The bottom layer of the SPED is a "triboelectric generator," or TEG, which generates the electric current necessary to run the diagnostic test simply by rubbing or pressing it. The researchers also designed an inexpensive handheld device called a potentiostat, which is easily plugged into the SPED to automate the diagnostic tests so that they can be performed by untrained users. The battery powering the potentiostat can be recharged using the TEG built into the SPEDs.

"To our knowledge, this work reports the first self-powered, paper-based devices capable of performing rapid, accurate, and sensitive electrochemical assays in combination with a low-cost, portable potentiostat that can be recharged using a paper-based TEG," Martinez said.

He co-authored the paper with graduate students Aniket Pal and Debkalpa Goswami; visiting scholars Hugo E. Cuellar and Heloisa F. N. Caurin; and Randy Kuang, a high school student who participated in the research.

The research paper describes the SPEDs, the portable potentiostat and a machine-vision algorithm that is able to recognize the color-coded information. The paper is available online at http://onlinelibrary.wiley.com/doi/10.1002/admt.201700130/full. SPEDs are compatible with mass-printing technologies, such as roll-to-roll printing or spray deposition. They can perform "multiplexed" analyses enabling the highly sensitive and accurate detection

of various targets for a range of point-of-care testing applications. And they can be used to power other electronic devices to facilitate telemedicine applications in resource-limited settings.

The SPEDs were used to detect biomarkers such as glucose, uric acid and L-lactate, ketones, and white blood cells, which indicate factors related to liver and kidney function, malnutrition and anemia. Future versions of the technology will contain several additional layers for more complex assays to detect diseases such as dengue fever, yellow fever, malaria, HIV and hepatitis, Martinez said.

###

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Ramses V. Martinez, 765-496-0399, rmartinez@purdue.edu

PHOTO CAPTION: This new paper-based diagnostic device detects biomarkers and identifies diseases by performing electrochemical analyses, and the assays change color to indicate specific test results. The device can plug into a handheld potentiostat, at left, to automate the diagnostic tests so that they can be performed by untrained users. (Purdue University photo/Aniket Pal) A publication-quality image is available at https://news.uns.purdue.edu/images/2017/martinez-potentiostat.jpg

ABSTRACT

Self-powered, Paper-based Electrochemical Devices for Sensitive Point-of-care Testing

Aniket Pal, Hugo E. Cuellar, Randy Kuang, Heloisa F. N. Caurin, Debkalpa Goswami, and Ramses V. Martinez*

A.Pal, H.E.Cuellar, R.Kuang, H.F.N.Caurin, D.Goswami, Prof.R.V.Martinez, School of Industrial Engineering, Purdue University

rof.R.V.Martinez, Weldon School of Biomedical Engineering, Purdue University, E-mail: rmartinez@purdue.edu

Abstract This work describes the fabrication of Self-powered, Paper-based Electrochemical Devices (SPEDs) designed for sensitive diagnostics in low-resource settings and at the point of care. SPEDs are inexpensive, lightweight, mechanically ?exible, easy to use, and disposable by burning. The top layer of the SPED is fabricated using cellulose paper with patterned hydrophobic domains that delineate hydrophilic, wicking-based micro?uidic channels for accurate colorimetric assays, and self-pipetting test zones for electrochemical detection. The bottom layer of the SPED is a triboelectric generator (TEG) fabricated on hydrophobic paper and capable of harvesting electric energy from the user's interaction with the SPED. An inexpensive and rechargeable handheld potentiostat was fabricated to interface with the SPED, enabling the accurate quantitative electrochemical detection of glucose, uric acid, and L-lactate. The battery powering the potentiostat can be recharged by the user, using the sequential discharge of a capacitor previously charged with the TEG built into the SPED. A machine-vision diagnostic application was created to automatically identify and quantify each of the colorimetric tests from a digital image of the SPED, taken under a wide range of ambient light conditions, in order to provide fast diagnostic results to the user as well as to facilitate remote expert consultation.

Note to Journalists: The research paper is available at http://onlinelibrary.wiley.com/doi/10.1002/admt.201700130/full or from Emil Venere, Purdue University News Service, 765-494-4709, venere@purdue.edu. A YouTube video is available at https://youtu.be/dOBTO8ScTe8. Other multimedia materials are available on Google Drive at https://goo.gl/X7FoQ2. The materials were prepared by Erin Easterling, digital producer for the Purdue College of Engineering, 765-496-3388, easterling@purdue.edu.

Media Contact

Emil Venere
venere@purdue.edu
765-494-4709

 @PurdueUnivNews

http://www.purdue.edu/ 

Emil Venere | EurekAlert!

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>