Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safely fixed hip prostheses

27.01.2009
Artificial hip joints are firmly anchored to the patient’s damaged bone by screws. But which parts of the bone will safely hold the screws in place? A simulation model is to calculate the strength of the bone from computer tomography images.

Hip prostheses do not hold forever. If an implant comes loose, the doctors have to replace it. Most patients need this second operation after about 15 years. By then, the first prosthesis has often worn down the pelvic bone in several places.

Moreover, the bone density, and thus also its strength, changes with increasing age. Medics therefore have to work out where best to place the screws that connect the artificial joint to the bone, and what shape the hip prosthesis needs to be in order to fit the surrounding bones as well as possible.

At present, doctors examine patients using computer tomography (CT), and determine the rough density of the bones from the images. On the basis of various assumptions, they then calculate how strong the bones are in different places. The problem is that, although there are various theories on which the simulations can be based, the results often deviate significantly from reality. The consistency of the damaged bones is usually different from what the simulation leads to believe.

This is set to be changed by researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden and their colleagues at the biomechanics laboratory of the University of Leipzig. They are developing a model with which doctors can reliably and realistically calculate the density and elasticity of the bone from the CT scanner images. To this end, the researchers are transferring methods usually used for component testing to human hip bones, which involve inducing oscillations in the bone. This type of examination cannot be carried out on the patient. The bone has to be clamped into an apparatus. “The nature of the oscillations enables us to deduce local properties of the bone – such as its density and elasticity,” explains IWU group manager Martin Quickert.

The researchers compare these results with scanned images of the bone and describe the correlations on the basis of a mathematical model. This should make it possible in future to determine the strength of a bone directly from the CT scanner images. The scientists have already performed the first examinations on prepared and thus preserved bones, and plan to induce oscillations in unprepared bones left in their natural state over the coming months. The researchers hope that in about two years’ time, doctors will be able to obtain a realistic simulation model of unprecedented quality from computer tomography data. The prostheses can then be perfectly anchored, and will be held safely in place for longer.

Martin Quickert | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2009/rn01fo6g.jsp
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic6.jsp

More articles from Medical Engineering:

nachricht Reinforcement learning expedites 'tuning' of robotic prosthetics
18.01.2019 | North Carolina State University

nachricht Powerful microscope captures first image of nanoscaffold that promotes cell movement
14.01.2019 | Sanford Burnham Prebys Medical Discovery Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>