Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World class technology and talent battle cancer at the Centenary Institute

27.11.2007
Top Austrian professor puts cancer under the microscope

The Centenary Institute, one of Australia’s leading medical research institutes, unveiled a powerful microscope unlike any other in Australia today. Representing the cutting edge in medical technology and microscopy, the unique imaging features of the multiphoton microscope will enable scientists at the Centenary Institute unprecedented access to the secret workings of living tissues at the cellular and molecular level.

The Centenary Institute is equally excited about the arrival of Austrian Professor Wolfgang Weninger, one of only a handful of people in the world who specialises in using the multiphoton microscope in the immunology field to view immune responses in real-time in living tissue.

At the Centenary, Professor Weninger will lead a team of researchers to study the dynamics of the immune system’s response to cancer and infectious diseases.

Professor Weninger said, “Cancer is still a leading cause of death in Australia. There is a need to develop improved anti-cancer therapies based on the use of the body’s own resources - namely our immune system. This type of microscope is an outstanding tool to study how our bodies fight cancer both in early and advanced stages. If we can learn more about how our immune system attacks cancer cells directly in the context of intact tissues, we hope to develop improved immuno-therapies.”

Using the multiphoton microscope, Professor Weninger’s team pioneered ground-breaking imaging models to record how the body’s defences fight tumours and infectious diseases. He has already astounded the medical community in Australia and the world by showing real-time videos of white blood cells invading and destroying cancer cells in living tissue. Centenary’s Executive Director, Professor Mathew Vadas said, “The arrival of Professor Weninger and the multiphoton microscope marks a new era in medical research for the Centenary Institute.

With one of his recently published papers among the ten all-time highest-ranked papers in biomedicine, we are honoured to have such an eminent researcher as Professor Weninger join the Centenary Institute.

I am confident that the results of his team’s research will vastly improve our understanding of how the body’s immune system fights cancer and infectious diseases. The multiphoton microscope will also support the research of other Centenary scientists particularly in autoimmune and liver diseases.”

The multiphoton microscope at the Centenary Institute has two unique features, its imaging mode and laser. The unique imaging mode uses multiple laser beams and means fast moving objects and dynamic processes in living tissue can be viewed, for example, cells in the blood stream. The laser has been enhanced with a unit called an OPO that produces longer wavelengths of light than those used in other microscopes enabling researchers to potentially look deeper into living tissue than ever before.

Jane Moloney | EurekAlert!
Further information:
http://www.centenary.org.au
http://www.researchaustralia.com.au

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>