Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new device will make quality control of radiotherapy treatments possible

22.11.2007
The research team from the Department of Electronics and Computer Science at the University of Granada (UGR), together with the Department of Radiology at the Hospital Virgen de las Nieves in Granada, have designed a portable and low-cost device which can measure the ionizing radiation someone is exposed to, for example, during radiotherapy.

Ionizing radiations play a vital role in the treatment and diagnosis of malignant neoplastic illnesses as well as in the diagnosis of other pathologies. However, according to Manuel Vilches Pacheco from the Medical Physics and Radiology Department at the Hospital Virgen de las Nieves in Granada, “the potential harm ionizing radiations can cause means that, in order to obtain clinical benefits and reduce the onset of unwanted adverse effects as much as possible, they must be used under strict quality control”.

According to experts, this is why it is important to develop instruments which can verify the final result by carrying out a direct follow-up of treatments administered to patients, such as image registration (portal imaging system) or the in vivo measurement of the exact dose administered to patients.

In vivo Control
Portal imaging systems have greatly improved in the last five years and are widely used today. This is not the case for systems used for in vivo dose measurement in vivo which, in a significant number of patients and treatment sessions, “has been limited to a few centres”. This is because a great amount of effort is required to place the device onto the patient and as it interferes noticeably with the treatment “it can considerably modify the distribution of the administered dose”.

On this matter, Alberto Palma López, from the Department of Electronics and Computer Science at the University of Granada, explains that this new device does not require an electricity connection or a reading supply unit and, among other improvements, it minimizes treatment disorders and is made of low-cost and reusable electronic devices, “something that was impossible until now”.

Furthermore, the device’s design has metrological characteristics which ensures that it performs correctly at high temperatures. This means the room does not need to be specially fit out. The detector’s minuscule size can measure the radiation quickly in different areas of the body as well as keep a historical record of the patient.

Significant progress has been made in encouraging the widespread use in vivo dosimetry control, an important element among patients undergoing radiotherapy. However, its use can be extended to other radiological practices such as diagnosis by X-ray or for the protection of professionals exposed to a radioactive environment.

Today, the Oficina de Transferencia de Resultados de Investigación (OTRI), from the University of Granada, promotes this device wich is protected by patent.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>