Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scans show gene therapy normalizes brain function in Parkinson's patients

21.11.2007
Brain scans used to track changes in a dozen patients who received an experimental gene therapy show that the treatment normalizes brain function - and the effects are still present a year later.

Andrew Feigin, MD, and David Eidelberg, MD, of The Feinstein Institute for Medical Research collaborated with Michael Kaplitt, MD, of Weill Cornell Medical Center in Manhattan and others to deliver genes for glutamic acid decarboxylase (or GAD) into the subthalamic nucleus of the brain in Parkinson’s patients. The study was designed as a phase I safety study, and the genes were delivered to only one side of the brain to reduce risk and to better assess the treatment.

A recently published study included the clinical results of the novel gene therapy trial, but this new report from the same study focuses on the power of modern brain scans to show that the gene therapy altered brain activity in a favorable way. This latest study is published this week in the Proceedings of the National Academy of Sciences.

The patients only received the viral vector-carrying genes to the side of the brain that controls movement on the side of their body most affected by the disease. It was a so-called open-label study -- everybody received the gene therapy so the scientists knew that there could be a placebo effect. That is why brain scans were so critical to the experiment. Dr. Eidelberg and his colleagues pioneered the technology and used it to identify brain networks in Parkinson’s disease and a number of other neurological disorders.

In Parkinson’s, they identified two discrete brain networks -- one that regulates movement and another that affects cognition. The results from the brain scan study on the gene therapy patients show that only the motor networks were altered by the therapy. “This is good news,” said Dr. Eidelberg, the senior investigator of the study. “You want to be sure that the treatment doesn’t make things worse.” The gene makes an inhibitory chemical called GABA that turns down the activity in a key node of the Parkinson’s motor network. The investigators were not expecting to see changes in cognition, and the scans confirmed that this did not occur.

Position emission tomography (PET) scans were performed before the surgery and repeated six months later and then again one year after the surgery. The motor network on the untreated side of the body got worse, and the treated side got better. The level of improvements in the motor network correlated with increased clinical ratings of patient disability, added Dr. Feigin.

“Having this information from a PET scan allows us to know that what we are seeing is real,” Dr. Eidelberg added. The scans also detected differences in responses between dose groups, with the highest gene therapy dose demonstrating a longer-lasting effect. “This study demonstrates that PET scanning can be a valuable marker in testing novel therapies for Parkinson's disease,” he said.

The gene therapy technique was developed by Neurologix Inc., a New Jersey-based company. Scientists are now working on a design for a phase 2 blinded study that would include a larger number of patients to test the effectiveness of the treatment.

Jamie Talan | EurekAlert!
Further information:
http://www.nshs.edu
http://www.FeinsteinInstitute.org
http://feinsteininstitute.typepad.com/feinsteinweblog/

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>