Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Year Round Proton Radiation Therapy At PSI Using A New, Dedicated Cyclotron

26.09.2007
A pioneer in proton therapy for the treatment of cancer, PSI has recently introduced one of the most advanced technologies in the field.

A new proton accelerator, a superconducting cyclotron, has been put into operation for patient treatment. The accelerator is used in conjunction with a gantry, a device which delivers the protons to the patient from any angle. The desired dose distribution is achieved by scanning a small pencil beam of protons throughout the tumor. The performance of the new accelerator has been excellent since the start of medical operation.

Proton radiation therapy for deep seated tumors using a compact gantry with spot scanning technology was PSI’s unique contribution to particle radiotherapy worldwide. After 10 years of medical operation (over 260 patients were treated between 1996 and 2005) with PSI’s main accelerator as the beam source, we installed a dedicated proton accelerator for medical use. This relieved the medical program from yearly technical accelerator shut downs of several months and from limited beam availability per day and week, all of which were due to the complexity of a large research facility.

The dedicated proton accelerator (called the COMET) is a compact, superconducting 250 MeV cyclotron. The original design came from the National Superconducting Cyclotron Laboratory at Michigan State University and was adapted to PSI’s specifications and requirements. They included reliable all year round beam production for clinical operation of both the original gantry (Gantry 1) and the eye treatment facility as well as technical flexibilities to accommodate the next generation gantry which features advanced beam scanning and is presently under construction (Gantry 2). Gantry 2 is a further PSI development which will bring beam scanning to the forefront of the medical use of protons.

The cyclotron was fabricated by ACCEL Instruments GmbH (Varian) in Bergisch Gladbach, Germany, and was successfully installed, commissioned and connected to Gantry 1 in 2006/7. The collaboration between ACCEL and PSI resulted in a system that meets stringent specifications, including reliability and efficient maintenance. The technical performance of the cyclotron has met all expectations and the first patient was treated with Gantry 1 and COMET in February 2007. After a planned shut down for technical fine tuning between June and early August patient treatments have been resumed. Future medical operation will be year round.

Gantry 2, with advanced beam scanning and features allowing the treatment of moving targets, will be commissioned in 2008. It is anticipated that the sophisticated technology of COMET and Gantry 2 will determine the future state-of-the-art of proton radiation therapy. Technology transfer to industry and clinics who are interested in advanced proton therapy facilities is foreseen.

Martin Jermann | alfa
Further information:
http://www.psi.ch

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>