Drug Eluting Nanostructured Coatings Enable Targeted Drug Therapy for Patients with Orthopedic Implants

In a paper presented at the NSTI Nanotech 2007 Conference, researchers at the University of California, San Francisco demonstrate how they have created nanotubes from biocompatible metal oxides that can hold therapeutic proteins or drugs and deliver these agents in a highly-controlled manner.

The fabrication strategies developed by the authors is flexible in terms of controlling the diameter and length scales of the tubes. By changing these physical parameters of nanotubes, they could precisely control the dosage and deliver drugs at physiological rates for desired duration of time. In the case of orthopedic implants with nanotubes on the implant surfaces, drugs such as antibiotics can be loaded in the tubes and released right at the site of implantation. This method, which targets the drug where it is needed, can avoid the side effects due to high dosages normally given to patients. Further, in cases where a very long treatment regimen is needed, such as in growth factor therapy, nanotubes may provide superior performance.

According to Ketul C. Popat, “When a person has an orthopedic implant surgery, they normally will have to take antibiotics and growth factors either orally or by injection. There are several side effects associated with taking drugs this way which can be very painful for the patient. However, by placing the drugs on to the surface of these implants, we can deliver them right where they are needed and can avoid larger doses and side effects. The nanostructured coating on the implant surface helps the drug to maintain its bioavailability as well as deliver the drugs at physiological rates for a desired duration of time.”

The presentation is “Drug Eluting Nanostructured Coatings” by K.C. Popat, M. Eltgroth and T.A. Desai, from the University of California, San Francisco. It will be given at the NSTI Nanotech 2007 conference in Santa Clara, CA on May 23, 2007, 11:30 AM, Santa Clara Convention Center, Grand Ballroom D.

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Media Contact

Jami Walker alfa

More Information:

http://www.elsevier.com

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

A flexible and efficient DC power converter for sustainable-energy microgrids

A new DC-DC power converter is superior to previous designs and paves the way for more efficient, reliable and sustainable energy storage and conversion solutions. The Kobe University development can…

Technical Trials for Easing the (Cosmological) Tension

A new study sorts through models attempting to solve one of the major challenges of contemporary cosmic science, the measurement of its expansion. Thanks to the dizzying growth of cosmic…

Partners & Sponsors