Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique is highly accurate in diagnosing, locating pancreas defects in newborns

31.01.2007
Noninvasive PET scans guide surgical care of dangerously high insulin levels

The noninvasive imaging technology called positron-emission tomography (PET scan) is extremely accurate in diagnosing a type of congenital hyperinsulinism (HI), a rare but severe imbalance of insulin levels in newborns. When that disease is confined to a limited section of the baby's pancreas, the PET scan is 100 percent accurate in locating the abnormal spot, and guiding surgeons to curative, organ-sparing surgery.

A research team from The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine reported highly encouraging preliminary results from a study of 24 infants referred to the Hyperinsulinism Center at Children's Hospital between December 2004 and November 2005. All the children had congenital hyperinsulinism that could not be controlled with medicine. If this condition goes uncontrolled, abnormally high insulin levels may cause irreversible brain damage. The study appeared in the February issue of the Journal of Pediatrics.

Congenital HI is caused by mutations that damage the insulin-secreting beta cells in the pancreas, which in an infant is smaller than an adult's little finger. When the abnormal cells are limited to a discrete portion of the pancreas, the disease is focal; when the abnormal cells are distributed throughout the organ, the disease is diffuse. Accurate diagnosis is important because focal disease can be cured by surgically removing the focal lesions. In diffuse disease, surgeons may remove nearly the total pancreas, but that leaves the child at risk for later diabetes.

Using a mildly radioactive compound called 18F-fluoro-L-dihydroxyphenylalanine, or [18F]-DOPA, the researchers diagnosed focal or diffuse hyperinsulinism correctly in 23 of the 24 cases, for an accuracy of 96 percent. In the 11 cases with focal hyperinsulinism, the technique was 100 percent accurate in pinpointing the abnormal lesions. [18F]-DOPA binds to the lesions, which then are visible to the naked eye on a body scanner.

"When we compared our findings from the PET scan with pathological results, we found 100 percent agreement in locating the focal lesions," said Olga T. Hardy, M.D., a pediatric endocrinologist at Children's Hospital who was the study's lead author. "This accuracy is superior to that of invasive, technically difficult techniques that measure insulin sampled from specific veins in an infant."

The Congenital Hyperinsulinism Center at The Children's Hospital of Philadelphia is the only facility of its kind in the country, and one of the few centers worldwide, with the knowledge and capability to successfully cure patients. Our specialists are true pioneers in the diagnosis and treatment of HI, offering patients the most innovative and compassionate care. The Center provides a multidisciplinary approach to care. Our sophisticated team of pediatric endocrinologists, surgeons, pathologists, anesthesiologists, nurses and researchers work closely together to provide seamless care on a full spectrum of services.

Joey Marie McCool | EurekAlert!
Further information:
http://www.chop.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>