Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s patient volunteers for first scan

24.11.2006
The University of Manchester’s Wolfson Molecular Imaging Centre will carry out its first positron emission tomography (PET) brain scan on a patient volunteer this Friday (24 November 2006) at 10.00.

The £22million Centre houses amongst the world’s most advanced brain and body scanners, and its High Resolution Research Tomograph (HRRT) brain scanner is unique in the UK and one of only 14 worldwide. It is the highest resolution clinical PET camera in the world and, unlike conventional MRI and CT scanners, allows doctors and researchers to see how the brain functions and its metabolism at work.

After five years’ development, the Centre’s team has now achieved the stringent regulatory standards necessary to allow operational activities to begin. A 77 year-old former RAF pilot and air traffic controller from Bowden in Cheshire has volunteered to be the first patient through the brain scanner, as part of a study of early Alzheimer’s Disease (AD).

Researcher Stephen Carter of the School of Psychological Sciences is investigating the transition from mild cognitive impairment (MCI) to early AD, as MCI is often considered a precursor of Alzheimer’s*.

He will examine the physiological factors and mental processes at work during this transition, and hopes to determine whether reduced consumption of glucose in the brain is more closely linked to cognitive impairment than the deposition of the protein amyloid, which many believe to be the cause of AD.

The high-tech scans will also allow him to assess whether changes in connectivity between the part of the brain responsible for memory - the medial temporal lobe - and associated areas correlate with these types of cognitive dysfunction.

He said, “It is of significant clinical importance to be able to detect the early changes associated with Alzheimer’s Disease and thereby enable more accurate diagnosis, as by the time dementia is currently diagnosed significant and irreversible brain damage has typically already taken place.

“Early detection could identify possible candidates for future clinical drug trials before large-scale global damage has occurred, which is essential for beneficial effects.

“Combining our new-breed, high-resolution PET scanner with MRI scanning in a single research environment allows us to compare the brain functions of MCI and probable AD patients in a unique way. Our machine also allows us to accurately measure amyloid deposition, which is not possible with standard PET scanners.”

Co-supervisor Professor Alistair Burns of the University’s Division of Psychiatry said: “This research is particularly timely given the recent decision by the National Institute for Clinical Excellence (NICE) not to make the drug Aricept available to patients with early Alzheimer’s Disease. This could result in the first judicial review against NICE which I hope will overturn this decision, and the earlier we’re able to diagnose the disease the quicker we’ll be able to take action against the irreversible damage it brings.”

The Centre’s Director Professor Karl Herholz said: “We’re thrilled to be carrying out this first patient brain scan, as it represents the whole essence of the WMIC; bridging the gap between advances in the lab and their application to help patients.

“With this series of experiments we hope that a convergent approach that investigates the multiple aspects of physiology and cognition at play in AD can be developed, which will enable early accurate diagnosis and distinguish MCI patients who will progress to full AD from those who will not.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>