Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technique quickly builds 3-D images of knees

31.07.2006
A faster magnetic resonance imaging (MRI) data-acquisition technique will cut the time many patients spend in a cramped magnetic resonance scanner, yet deliver more precise 3-D images of their bodies.

Developed at the University of Wisconsin-Madison, the faster technique will enable clinics to image more patients - particularly the burgeoning group of older adults with osteoarthritis-related knee problems - and can help researchers more rapidly assess new treatments for such conditions.

Magnetic resonance has long been touted as the ideal method for capturing 3-D images of the human body. "But unfortunately, it is kind of a slow technique," says Walter Block, an associate professor of biomedical engineering and medical physics. "You can only sample a few pieces of information needed to build the image at a time."

Consequently, most magnetic resonance technicians acquire images as a series of 2-D slices, which yield high resolution in a single plane and poor resolution in the remaining direction, he says.

To capture an image, a magnetic resonance scanner commonly conducts hundreds to thousands of little "experiments," or encodings, that help to make up the big picture. Block's data-acquisition technique capitalizes on recent magnetic resonance hardware advances that, coupled with a novel way of maintaining a high-level magnetic resonance signal throughout the scan, will speed an MRI session. "But to maintain the high-level signal," he says," you need to be able to complete each of these smaller encodings within a couple of milliseconds."

Rather than using the conventional approach, which sweeps horizontally to gather magnetic resonance data, Block's technique acquires the body's signals radially, in a way that looks somewhat like a toy Koosh ball. "We can essentially acquire data during the whole experiment, where in the (conventional) case, a lot of time was spent either prepping for the experiment or returning it to the steady state so that you could do the next experiment," Block says. "What we're doing now is capable of a study that you can visualize in any plane in about the same time as people are doing one plane."

For example, when imaging a joint like the knee - Block's inspiration for developing the new technique - suppressing the fat signal in bone provides image contrast between bone and the cartilage surface. The conventional data-acquisition method would spend half its scan time suppressing the signal from fat, instead of imaging cartilage. However, Block's technique exploits the difference in resonant frequencies between fat and water. During the scan time, then, the technique maximizes each component of the image, so that a technician can view any aspect.

High-resolution 3-D images are important not only from diagnostic and clinical standpoints, but also to help patients better understand their health conditions, says Block. "If you could actually look at a 3-D model from different perspectives, you'd have a much better chance to make sense of the pain you're feeling, your doctor's diagnosis and your treatment options," he says.

The technique, which Block patented through the Wisconsin Alumni Research Foundation, also will make it easier to image parts of the body, such as the heart or abdomen, in which motion is a factor.

In related research, Block also has developed an algorithm that, within less than a second, can calibrate a magnetic resonance system to use nonconventional methods of data acquisition, yet produce clearer images.

Walter Block | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>