Penn researchers discover the powerful tool of simultaneous fMRI and PET imaging

By comparing these two functional images, physicians may be able to better diagnose and treat patients with brain disorders

Philadelphia, PA) – Clinical researchers from the University of Pennsylvania Health System (UPHS) are the first to combine fMRI and PET scanning in radiology, creating a way to compare different measurements of the brain’s function concurrently. This analysis could lead to better diagnosis and treatment in patients suffering from brain disorders, like Alzheimer’s disease.

"By using these two established methods, we now have an integrated way to look at the brain’s functions," explained Andrew Newberg, MD, a radiologist in nuclear medicine at UPHS and lead author on this clinical study. "We can now get a more comprehensive view of what’s happening in the brain at a particular time, than we’ve ever been able to do before. We can look at more diseases and more activation states."

The work combines the functional imaging of fMRI (functional magnetic resonance imaging), which captures the blood flow in the brain, and PET scanning (positron emission tomography), which looks at the glucose metabolism in the brain. "Normally, these two measures are coupled, or paired together. The more metabolism you have, the more blood flow," adds Newberg. "But there are times the two don’t match up with each other like with stroke, seizure disorders, or neurodegenerative disorders. That’s what led us to this new technique so that we can explore many different aspects of the brain’s function."

So how does this new simultaneous imaging approach actually work? Radiologists inject a patient with radioactive material used for a PET scan WHILE the patient is already inside an fMRI scanner. During the time that material is being taken up in the brain, radiologists are acquiring the fMRI image. Then, when that is complete, radiologists take the patient immediately to the PET scanner, to retrieve the PET image.

"We have both machines available to us and have now put them together in a way that works," adds Newberg. "We can take the results of the simultaneous fMRI and PET scans and come up with two separate results and compare them for a new look at the brain. Using this technique, you capture the exact same moment in the brain with both scans. It will help to show us what the relationship is between metabolism and blood flow. Do those two really match up in large majority of conditions?"

Newberg said one goal of this new simultaneous fMRI-PET scan is to better understand the effect of certain medications on the brain and body. The clinical research for this study has been conducted through the PET Center at the Hospital of the University of Pennsylvania and through the Center for Functional Neuroimaging (CFN), known for its excellence in multi-disciplinary brain imaging.

Media Contact

Susanne Hartman EurekAlert!

More Information:

http://www.uphs.upenn.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors