Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bake, bake, bake a bone

09.07.2008
Individual bone implants whose structure resembles that of the natural bone can now be produced quite easily.

First, a simulation program calculates the bone’s internal structure and porosity, then a rapid prototyping machine “bakes” the implant from metal powder.

Scientists have learnt many things from nature – for example, the structure of a bone. Bones are very light but nonetheless able to withstand extremely heavy loads. The inside of a bone is like a sponge. It is particularly firm and compact in certain places, and very porous in others. The lightweight construction industry is especially interested in copying this construction method.

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research therefore developed a simulation program that calculates the internal structure and density distribution of the bone material. From this, the scientists were able to derive the material structure for other components. The program simulates how the structure needs to be built in order to meet the specified requirements.

The researchers have now managed to put these simulations successfully into practice. Engineers can produce complex components with the aid of rapid prototyping technology. This involves coating a surface with wafer-thin layers of special metal powder. A laser beam heats – or sinters – the powdered metal in the exact places that need to be firm. “It’s like baking a cake,” says Andreas Burblies, spokesman for the Fraunhofer Numerical Simulation of Products, Processes Alliance.

Any remaining loose powder is subsequently removed. “The end product is an open-pored element,” explains Burblies. “Each point possesses exactly the right density and thus also a certain stability.” The method allows the engineers to produce particularly lightweight components – customized for each application – that are also extremely robust. In the meantime, the researchers have further enhanced the process to the point where they can actually change the internal structure of the parts after production by means of precision drilling.

“We can manufacture and adapt the parts exactly as required,” says Burblies. This makes the technique very attractive to a number of industries, among them the manufacturers of bone implants. It is easy to produce individual implants with an internal structure that resembles the patient’s bone.

Metal powders made of biomaterials such as titanium and steel alloys make it possible to reconstruct other bone elements, such as parts of the knee. And it goes without saying that the lightweight construction industry, especially aircraft, automobile and machine manufacturers, all benefit from the robust workpieces, as they are better able to withstand stress of every kind.

Press Office | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/07/ResearchNews072008Topic2.jsp

More articles from Medical Engineering:

nachricht Non-invasive view into the heart
24.06.2019 | Goethe-Universität Frankfurt am Main

nachricht New imaging modality targets cholesterol in arterial plaque
14.06.2019 | SPIE--International Society for Optics and Photonics

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>