Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radioactive health

19.06.2008
For decades, we have been told that exposure to radiation is dangerous. In high doses it is certainly lethal and chronic exposure is linked to the development of cancer.

But, what if a short-term controlled exposure to a low dose of radiation were good for our health. Writing in today's issue of the Inderscience publication the International Journal of Low Radiation, Don Luckey, makes the startling claim that low dose radiation could be just what the doctor ordered!

Luckey, an emeritus professor of the University of Missouri, was the nutrition consultant for NASA's Apollo 11 to 17 moon missions and has spent the last several years developing the concept of improving health through exposure to low-dose radiation.

"When beliefs are abandoned and evidence from only whole body exposures to mammals is considered, it becomes obvious that increased ionising radiation would provide abundant health," Luckey explains. He suggests that as with many nutritional elements, such as vitamins and trace metals it is possible to become deficient in radiation. "A radiation deficiency is seen in a variety of species, including rats and mice; the evidence for a radiation deficiency in humans is compelling."

In the first part of the twentieth century at a time when our understanding of radioactivity was only just emerging, health practitioners began to experiment widely with samples of radioactive materials. Then, exposure to radiation, rather than being seen as hazardous, was considered a panacea for a wide variety of ailments from arthritis to consumption.

The discovery of antibiotics and the rapid advent of the pharmaceutical industry, as well as the fact that it became apparent that exposure to high doses of radiation could be lethal led to the demise of this "alternative" approach to health.

Today, radioactivity is used in targeted therapies for certain forms of cancer, however, the use of radiation sources for treating other diseases is not currently recognised by the medical profession.

Luckey hopes to change that viewpoint and argues that more than 3000 scientific papers in the research literature point to low doses of radiation as being beneficial in human health. He points out that, as with many environmental factors, we have evolved to live successfully in the presence of ionising radiations. His own research suggests that radiation exposure can minimise infectious disease, reduce the incidence of cancer in the young, and substantially increase average lifespan.

Studies on the growth, average lifespan, and decreased cancer mortality rates of humans exposed to low-dose irradiation show improved health, explains Luckey. This represents good evidence that we live with a partial radiation deficiency and that greater exposure to radiation would improve our health, a notion supported by 130 on the health of people living in parts of the world with higher background levels of ionising radiation than average.

Luckey suggests that the medical use of small samples of partially shielded radioactive waste would provide a simple solution to radiation deficiency. Of course, there are several questions that will have to be answered before a health program based on this study could be implemented. How much should we have and what is the optimum exposure?

Evidence suggests that low dose exposure increases the number and activity of the immune system's white blood cells, boosts cytocrine and enzyme activity, and increases antibody production and so reduces the incidence of infection, assists in wound healing, and protects us from exposure to high doses of radiation.

"It is unfortunate that most literature of radiobiology involves fear and regulations about the minimum possible exposure with no regard for radiation as a beneficial agent," says Luckey, "Those who believe the Linear No Threshold (LNT) dogma have no concept about any benefits from ionising radiation. Many radiobiologists get paid to protect us from negligible amounts of ionising radiation. Our major concern is health."

Professor André Maïsseu, the journal's Editor-in-Chief, and President of the World Council of Nuclear Workers WONUC) says: "This is a very bright, interesting and important paper about the real effects of ionising radiation - radioactivity - on humans, mammals and biotopes." He adds that, the paper, "is part of the movement we - nuclear workers - promoting good science and fighting obscurantism in this scientific field.

Maïsseu points out that the European Union recently refused to support a world-wide study on related work. "This was the first time nuclear workers have asked the European Union to support a scientific study," Maïsseu says, "We received nothing yet for more than thirty years, so-called 'green' organisations have received hundreds of millions euros, and with what results?" He adds that, "It is a shame and a scandal that political reasons are being used to decide on science funding."

Albert Ang | alfa
Further information:
http://www.inderscience.com

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>