Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the footprint of cells

09.06.2008
Even the slightest differences are important in competitive sport: To improve a ski jumper’s performance, the trainer can analyze the jump very accurately using force sensors.

Researchers in Jena and Bremen are planning something similar. However, their work is not with athletes but with tiny somatic cells. The experts have developed a low-cost optical sensor to measure the force with which migrating cells push themselves away from an underlying surface.

Force analysis devices like these could one day help to identify specific cell types – more reliably than using a microscope or other conventional methods.

The sensor is the outcome of an EU project. It consists of a smooth surface that is studded with 250,000 tiny plastic columns measuring only five microns in diameter, rather like a fakir’s bed of nails. These columns are made of elastic polyurethane plastic. When a cell glides across them, it bends them very slightly sideways. This deflection is registered by a digital camera and analyzed by a special software program.

The researchers working with project manager Dr. Norbert Danz of the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena have already shown that their ‘Cellforce’ sensor works. It will be the task of initial biological tests to show how different cell types behave. “Analysis of cell locomotion is important for numerous applications,” says Danz. “It could be used to check whether bone cells are successfully populating an implant, or how well a wound is healing.”

Developing the sensor was no easy undertaking. For one thing, the columns have to be coated in such a way that living cells are happy to move across their tips. The cells would otherwise avoid the tips and continue their journey lower down between the columns. In that case, there would be no deflection at all. Danz had the task of adapting the microscope required for cell magnification to make it exactly right for the application.

Building the delicate column structure developed by researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen is no less tricky: The researchers press liquid plastic at a pressure of 2000 bar into a negative mold and allow it to harden. It is a challenge even to manufacture the required mold, with its 250,000 micron-sized holes.

To allow cost-effective production of the ‘Cellforce’ sensor in future, the researchers utilize commercially available plastics and well-established techniques from chip manufacture. The first ‘Cellforce’ prototype is expected to be ready in a year’s time.

Monika Weiner | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/06/ResearchNews062008Topic6.jsp

More articles from Medical Engineering:

nachricht New quantum material could warn of neurological disease
11.04.2019 | Purdue University

nachricht High-strength MRI tracks MS progression
09.04.2019 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>